Thermal stability and electrochemical behavior of commercial polycrystalline and single-crystalline cathodes integrated with cubic Li6.4La3Zr1.4Ta0.6O12 for all-solid-state lithium batteries

All-solid-state lithium batteries (ASSLBs) have emerged as promising next-generation energy storage systems, offering enhanced safety and higher energy density compared to conventional Li-ion batteries. However, their practical performance remains limited by interfacial instabilities. In this work,...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 32; pp. 26647 - 26659
Main Authors Ma, Ziting, LaBriola, Grant, Salazar, Karlo Adrian, Mi, Chunting Chris, Kong, Lingping
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.08.2025
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d5ta03114a

Cover

Loading…
Abstract All-solid-state lithium batteries (ASSLBs) have emerged as promising next-generation energy storage systems, offering enhanced safety and higher energy density compared to conventional Li-ion batteries. However, their practical performance remains limited by interfacial instabilities. In this work, we systematically investigate the interfacial reactions and secondary phase formation between garnet-type cubic Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and a variety of commercial cathode materials, including polycrystalline LiNi0.5Mn1.5O4 (pc-LNMO), LiCoO2 (pc-LCO), LiNi1−x−yMnxCoyO2 (pc-NMC811, 631, 532, 111), and single-crystalline NMC631 (sc-NMC631). Structural analyses reveal that interfacial phase evolution is highly dependent on cathode composition, crystal structure, and sintering temperature. Among all compositions studied, sc-NMC631 exhibits superior thermal compatibility with LLZTO, maintaining phase integrity up to 1000 °C. In contrast, polycrystalline cathodes undergo distinct interfacial degradation: La2Zr2O7 and LaCoO3 form at 700 °C in pc-LCO + LLZTO, while Li2MnO3 and La2Zr2O7 emerge as early as 400 °C in pc-LNMO + LLZTO. In pc-NMC + LLZTO composites, LaMO3-type (M: Ni, Mn, Co) phases are consistently observed. Additionally, La2(Ni0.5Li0.5)O4 phase is present in these Ni-rich compositions and Li2MnO3 is in the Ni-lean NMC111. Electrochemical studies reveal a 63% capacity loss in pc-NMC631 + LLZTO-900, primarily due to resistive interfacial phases and poor solid–solid contact that impede Li-ion transport. In comparison, sc-NMC631 + LLZTO-900 demonstrates a lower capacity loss of 48%, attributed to enhanced interfacial stability over its polycrystalline counterpart. However, the remaining capacity loss is likely due to misaligned Li-ion transport pathways across the rigid solid–solid interface. These results highlight the critical role of cathode selection and interface engineering in garnet-based ASSLBs and establish sc-NMC631 as a promising candidate for high-performance composite cathodes.
AbstractList All-solid-state lithium batteries (ASSLBs) have emerged as promising next-generation energy storage systems, offering enhanced safety and higher energy density compared to conventional Li-ion batteries. However, their practical performance remains limited by interfacial instabilities. In this work, we systematically investigate the interfacial reactions and secondary phase formation between garnet-type cubic Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and a variety of commercial cathode materials, including polycrystalline LiNi0.5Mn1.5O4 (pc-LNMO), LiCoO2 (pc-LCO), LiNi1−x−yMnxCoyO2 (pc-NMC811, 631, 532, 111), and single-crystalline NMC631 (sc-NMC631). Structural analyses reveal that interfacial phase evolution is highly dependent on cathode composition, crystal structure, and sintering temperature. Among all compositions studied, sc-NMC631 exhibits superior thermal compatibility with LLZTO, maintaining phase integrity up to 1000 °C. In contrast, polycrystalline cathodes undergo distinct interfacial degradation: La2Zr2O7 and LaCoO3 form at 700 °C in pc-LCO + LLZTO, while Li2MnO3 and La2Zr2O7 emerge as early as 400 °C in pc-LNMO + LLZTO. In pc-NMC + LLZTO composites, LaMO3-type (M: Ni, Mn, Co) phases are consistently observed. Additionally, La2(Ni0.5Li0.5)O4 phase is present in these Ni-rich compositions and Li2MnO3 is in the Ni-lean NMC111. Electrochemical studies reveal a 63% capacity loss in pc-NMC631 + LLZTO-900, primarily due to resistive interfacial phases and poor solid–solid contact that impede Li-ion transport. In comparison, sc-NMC631 + LLZTO-900 demonstrates a lower capacity loss of 48%, attributed to enhanced interfacial stability over its polycrystalline counterpart. However, the remaining capacity loss is likely due to misaligned Li-ion transport pathways across the rigid solid–solid interface. These results highlight the critical role of cathode selection and interface engineering in garnet-based ASSLBs and establish sc-NMC631 as a promising candidate for high-performance composite cathodes.
Author LaBriola, Grant
Mi, Chunting Chris
Salazar, Karlo Adrian
Kong, Lingping
Ma, Ziting
Author_xml – sequence: 1
  givenname: Ziting
  surname: Ma
  fullname: Ma, Ziting
– sequence: 2
  givenname: Grant
  surname: LaBriola
  fullname: LaBriola, Grant
– sequence: 3
  givenname: Karlo Adrian
  surname: Salazar
  fullname: Salazar, Karlo Adrian
– sequence: 4
  givenname: Chunting Chris
  surname: Mi
  fullname: Mi, Chunting Chris
– sequence: 5
  givenname: Lingping
  surname: Kong
  fullname: Kong, Lingping
BookMark eNpNjs1OwzAQhC1UJErhwhNY4pxix4mTHFHFn1Spl3Lhgtb2hhg5cbFdUF-OZ8MChNjLrmb1zcwpmU1-QkIuOFtyJrorUydggvMKjsi8ZDUrmqqTs7-7bU_IeYyvLE_LmOy6OfncDhhGcDQmUNbZdKAwGYoOdQpeDzhanb8KB3i3PlDfU-3HEYO2Wd55d9DhkFnn7ITfaLTTi8Piv6whDd5gpHZK-BIgoaEfNg1U75XVdG3lslqDeAp8WW2BLeWGl7TPaZkvonfWFNkrIc39BrsfqYKUMFiMZ-S4Bxfx_HcvyOPtzXZ1X6w3dw-r63Wx422dilYaxRtVcdEjlkoyxnVn6h6M1rwUusG6AWVaUVaaGwQQjZZSSYEgEUGJBbn88d0F_7bHmJ5f_T5MOfJZlKKVDWOdFF-Udnzi
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID 7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d5ta03114a
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 26659
GroupedDBID 0-7
0R~
705
7SP
7SR
7ST
7U5
8BQ
8FD
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C1K
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
JG9
L7M
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
SOI
ID FETCH-LOGICAL-p185t-86db17b413fee2b6001c9d5fadcc123c7e57abd8324c1deaa37c66b63ea6eeab3
ISSN 2050-7488
IngestDate Tue Aug 12 12:11:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p185t-86db17b413fee2b6001c9d5fadcc123c7e57abd8324c1deaa37c66b63ea6eeab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3238670096
PQPubID 2047523
PageCount 13
ParticipantIDs proquest_journals_3238670096
PublicationCentury 2000
PublicationDate 2025-08-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-12
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
SSID ssj0000800699
Score 2.4511955
Snippet All-solid-state lithium batteries (ASSLBs) have emerged as promising next-generation energy storage systems, offering enhanced safety and higher energy density...
SourceID proquest
SourceType Aggregation Database
StartPage 26647
SubjectTerms Batteries
Cathodes
Composition
Crystal structure
Electrochemical analysis
Electrochemistry
Electrode materials
Energy storage
Garnets
Interface reactions
Ion transport
Lithium
Lithium batteries
Lithium-ion batteries
Polycrystals
Single crystals
Solid state
Thermal stability
Title Thermal stability and electrochemical behavior of commercial polycrystalline and single-crystalline cathodes integrated with cubic Li6.4La3Zr1.4Ta0.6O12 for all-solid-state lithium batteries
URI https://www.proquest.com/docview/3238670096
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF616QUOiKcoFLQHLiiy8Ws3zjGgVAWl7QFHirhE-7Kw5CbIOIf2x_HbmH3ZVlIh4GIla9mxPZ93ZifzfYPQOwYznna0sEwlLMj4hAU5JTKIpyznmcxErjQ5-fKKXiyzLyuyOjp-P6ha2rU8FHf38kr-x6owBnbVLNl_sGx3UhiAz2Bf2IKFYfu3NoZ5VRM-rNq21VJynW2ElwLwTHxXQX6jeyxp_tW2vhXNLRxbm1DTZNDBkdUqGA5rXdetNGVbTljC16vveCVgTU_DbMHSb00cZgWLQnodJ7Y0s64DuP1KBoa0pMnO36vdzZgbRU9fu3gYF0MIbZ_dWPhmdOF4ZnlFfo_RKbesRXPZngVmHkKfZDf_vFSt985GX_JjU8Fq3tJzWF_085XV7I65ApOm3o5nshm8OZeVrU1wjTWMJMMwYZIQnQGO--W1Tcv4mlhT8-Jupp96k4hEWmXVegY1HLP9dzvfkQ7eEZeodZ6AUisl6sIK-G6lzw98VpRqyVdJWgYTbJwNPLOvRri6Xp8vF4t1MV8Vx-gkgRVRMkIns3nxedElFHXoT02_1O7qvRxvOv3Qn_4g6DCRVPEYPXKmxjOL5yfoSG2eoocDYcxn6JdDNu6QjcHOeA_Z2CMbb0vcIxvvIdsceohs7JGNe2RjjWxskI3vRTYG5OE9ZGOHbNwh-zlans-LTxeB6zQS_IB4tYXpSfJ4wiGgK5VKuF4EiKkkJZNCQGgnJopMGJfg_TIRS8VYOhGUcpoqRpViPH2BRpvtRr1E8FN5njEiSMzKjAvColykZaJixQXNZXSKzvzjX7up5Oc6hcBZ8-Wm9NWfd79GD3pIn6FR2-zUG4iKW_7W4eE3Ao7IBQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+and+electrochemical+behavior+of+commercial+polycrystalline+and+single-crystalline+cathodes+integrated+with+cubic+Li6.4La3Zr1.4Ta0.6O12+for+all-solid-state+lithium+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ma%2C+Ziting&rft.au=LaBriola%2C+Grant&rft.au=Salazar%2C+Karlo+Adrian&rft.au=Mi%2C+Chunting+Chris&rft.date=2025-08-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=32&rft.spage=26647&rft.epage=26659&rft_id=info:doi/10.1039%2Fd5ta03114a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon