Collaborative Classification of Hyperspectral and LiDAR Date Based on Dynamic Multiple Fractional Fourier Domains Fusion

Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patt...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16
Main Authors Qin, Boao, Shou Feng, Zhao, Chunhui, Li, Wei, Tao, Ran
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patterns in the pure spatial domain, while paying little attention to complementary cues in the spatial-frequency domain. The model’s expressive capability of these methods may be limited by an upper bound subject to the spatial domain. To fill this gap, a dynamic multiple fractional Fourier domains fusion (DMFraF) is proposed for the joint classification of hyperspectral and LiDAR data. First, to comprehensively learn the complementary patterns between hyperspectral image (HSI) and LiDAR data, we transform the features of two modalities into multiple fractional domains containing different spatial-frequency components for multimodal fusion. Second, to obtain the optimal representation from the multimodal features of multiple fractional domains, we propose a dynamic fusion scheme guided by the optimal transport (OT) technique, which can dynamically adjust the contributions from different fractional domains. Finally, to extract purer modality-specific features, we propose a channel aggregation Transformer encoder with channel aggregation Transformer ([Formula Omitted]AT encoder), to aggregate channel-wise features of central pixels into the spatial branch and compress interference from noisy surroundings. Extensive experiments and analysis on three hyperspectral and LiDAR datasets suggest the superiority of the proposed method.
AbstractList Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patterns in the pure spatial domain, while paying little attention to complementary cues in the spatial-frequency domain. The model’s expressive capability of these methods may be limited by an upper bound subject to the spatial domain. To fill this gap, a dynamic multiple fractional Fourier domains fusion (DMFraF) is proposed for the joint classification of hyperspectral and LiDAR data. First, to comprehensively learn the complementary patterns between hyperspectral image (HSI) and LiDAR data, we transform the features of two modalities into multiple fractional domains containing different spatial-frequency components for multimodal fusion. Second, to obtain the optimal representation from the multimodal features of multiple fractional domains, we propose a dynamic fusion scheme guided by the optimal transport (OT) technique, which can dynamically adjust the contributions from different fractional domains. Finally, to extract purer modality-specific features, we propose a channel aggregation Transformer encoder with channel aggregation Transformer ([Formula Omitted]AT encoder), to aggregate channel-wise features of central pixels into the spatial branch and compress interference from noisy surroundings. Extensive experiments and analysis on three hyperspectral and LiDAR datasets suggest the superiority of the proposed method.
Author Li, Wei
Qin, Boao
Shou Feng
Tao, Ran
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Boao
  surname: Qin
  fullname: Qin, Boao
– sequence: 2
  fullname: Shou Feng
– sequence: 3
  givenname: Chunhui
  surname: Zhao
  fullname: Zhao, Chunhui
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 5
  givenname: Ran
  surname: Tao
  fullname: Tao, Ran
BookMark eNotkE9Lw0AQxRepYFv9AN4WPKfu7J9scqypaYWKUOu5TJNd2JJmYzYR--1d0dPwmPcev5kZmbS-NYTcA1sAsPxxv969LzjjaiGUzqUQV2QKSmUJS6WckCmDPE14lvMbMgvhxBhIBXpKvgvfNHj0PQ7uy9CiwRCcdVWUvqXe0s2lM33oTDX02FBsa7p1q-WOrnAw9AmDqWk0ri4tnl1FX8dmcF1jaNlj9VsRM6Ufe2d6uvJndG2g5Rji4pZcW2yCufufc_JRPu-LTbJ9W78Uy23SQaaGBGSVc4wXWcFTEaGtPDKLRw1SW11BhQBYS5GyWmhlGK-ZsjrjYLhNgRsxJw9_vV3vP0cThsMp8kSucBCci1zHX3HxAwJHYQ8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3579433
DatabaseName Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
7UA
8FD
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
C1K
CS3
DU5
EBS
F1W
F5P
FR3
H8D
H96
HZ~
IFIPE
IPLJI
JAVBF
KR7
L.G
L7M
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
ID FETCH-LOGICAL-p185t-14c92a794f3263145f4b0fab7147f7c1ca11ad4360d375e02d05f7821e2f612e3
ISSN 0196-2892
IngestDate Tue Jul 22 18:41:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p185t-14c92a794f3263145f4b0fab7147f7c1ca11ad4360d375e02d05f7821e2f612e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3223974332
PQPubID 85465
PageCount 16
ParticipantIDs proquest_journals_3223974332
PublicationCentury 2000
PublicationDate 20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 20250101
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationYear 2025
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0014517
Score 2.4629912
Snippet Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the...
SourceID proquest
SourceType Aggregation Database
StartPage 1
SubjectTerms Aggregation
Algorithms
Classification
Coders
Frequency dependence
Hyperspectral imaging
Information processing
Land cover
Lidar
Machine learning
Upper bounds
Title Collaborative Classification of Hyperspectral and LiDAR Date Based on Dynamic Multiple Fractional Fourier Domains Fusion
URI https://www.proquest.com/docview/3223974332
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJ7QDBAXAbyA29VSpzYzfI41oYKdUMaqah4qRzHpn2gmZoETfuR-007viRNKULAS1S5udnny7n5XBB6x2NfKSWpF-TZiUeFEPBJUeZJ4eccRH7Ocr2je34xnMzopzmb93q3nailusoG4ua3eSX_Q1UYA7rqLNl_oGx7UxiA30BfOAKF4fhXND7bEvGntP0tdeRPqwVOwMi0uZQbVxJguhqdXgKpK9n_APIr13sFI9uUvn_exBYmG5vtANckrqXdqPjBdTBNUpcNIZ1Gq61F3Wii6Tputh--y6LJFzLx6xIAIfulDpZ3klL7Wl2r-IIXrZ9nWdR9WOL2nG9Lbn25y3q9rFfN8NTEIHyVq67TImC_OC1SExjaCYYYm54_bX2EcdsCqGzrMrZM06jeMLfGVeIco_HQA-PRcnbpmDk78UDlol1u79ipZdekI_dtyue-RDEFWdOPl18GeiKDkOmSeuFWfDYhAxefF8lsOl2k43l6D90PwGxx-YTtrhZlxKXv23d1u-zwiPd7D9jTDYzCkz5Gj5ylgk8t7J6gnlwfocNO_coj9MDED4vyKbregSLehSIuFN6BIobVxwaKWEMRGyhiONFBETdQxFsoYgdF7KCILRSfoVkyTs8mnmvq4V2Balh5hIo44DBFBYZDCEuiaOYrnkWERioSRHBCeE7DoZ-HEZN-kPtMgRpLZKBAG5fhc3SwLtbyBcJZHg9jn4dccp8qbeoEWahCXzFJRBSQl-i4WcKF-2rLBQgwUMF11b5Xf_77NXq4Re4xOqg2tXwDCmiVvTVUvQO5dIq8
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Classification+of+Hyperspectral+and+LiDAR+Date+Based+on+Dynamic+Multiple+Fractional+Fourier+Domains+Fusion&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qin%2C+Boao&rft.au=Shou+Feng&rft.au=Zhao%2C+Chunhui&rft.au=Li%2C+Wei&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3579433&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon