Collaborative Classification of Hyperspectral and LiDAR Date Based on Dynamic Multiple Fractional Fourier Domains Fusion
Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patt...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patterns in the pure spatial domain, while paying little attention to complementary cues in the spatial-frequency domain. The model’s expressive capability of these methods may be limited by an upper bound subject to the spatial domain. To fill this gap, a dynamic multiple fractional Fourier domains fusion (DMFraF) is proposed for the joint classification of hyperspectral and LiDAR data. First, to comprehensively learn the complementary patterns between hyperspectral image (HSI) and LiDAR data, we transform the features of two modalities into multiple fractional domains containing different spatial-frequency components for multimodal fusion. Second, to obtain the optimal representation from the multimodal features of multiple fractional domains, we propose a dynamic fusion scheme guided by the optimal transport (OT) technique, which can dynamically adjust the contributions from different fractional domains. Finally, to extract purer modality-specific features, we propose a channel aggregation Transformer encoder with channel aggregation Transformer ([Formula Omitted]AT encoder), to aggregate channel-wise features of central pixels into the spatial branch and compress interference from noisy surroundings. Extensive experiments and analysis on three hyperspectral and LiDAR datasets suggest the superiority of the proposed method. |
---|---|
AbstractList | Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the applications associated with land cover recognition and mapping. Existing joint classification algorithms mainly focus on learning complementary patterns in the pure spatial domain, while paying little attention to complementary cues in the spatial-frequency domain. The model’s expressive capability of these methods may be limited by an upper bound subject to the spatial domain. To fill this gap, a dynamic multiple fractional Fourier domains fusion (DMFraF) is proposed for the joint classification of hyperspectral and LiDAR data. First, to comprehensively learn the complementary patterns between hyperspectral image (HSI) and LiDAR data, we transform the features of two modalities into multiple fractional domains containing different spatial-frequency components for multimodal fusion. Second, to obtain the optimal representation from the multimodal features of multiple fractional domains, we propose a dynamic fusion scheme guided by the optimal transport (OT) technique, which can dynamically adjust the contributions from different fractional domains. Finally, to extract purer modality-specific features, we propose a channel aggregation Transformer encoder with channel aggregation Transformer ([Formula Omitted]AT encoder), to aggregate channel-wise features of central pixels into the spatial branch and compress interference from noisy surroundings. Extensive experiments and analysis on three hyperspectral and LiDAR datasets suggest the superiority of the proposed method. |
Author | Li, Wei Qin, Boao Shou Feng Tao, Ran Zhao, Chunhui |
Author_xml | – sequence: 1 givenname: Boao surname: Qin fullname: Qin, Boao – sequence: 2 fullname: Shou Feng – sequence: 3 givenname: Chunhui surname: Zhao fullname: Zhao, Chunhui – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei – sequence: 5 givenname: Ran surname: Tao fullname: Tao, Ran |
BookMark | eNotkE9Lw0AQxRepYFv9AN4WPKfu7J9scqypaYWKUOu5TJNd2JJmYzYR--1d0dPwmPcev5kZmbS-NYTcA1sAsPxxv969LzjjaiGUzqUQV2QKSmUJS6WckCmDPE14lvMbMgvhxBhIBXpKvgvfNHj0PQ7uy9CiwRCcdVWUvqXe0s2lM33oTDX02FBsa7p1q-WOrnAw9AmDqWk0ri4tnl1FX8dmcF1jaNlj9VsRM6Ufe2d6uvJndG2g5Rji4pZcW2yCufufc_JRPu-LTbJ9W78Uy23SQaaGBGSVc4wXWcFTEaGtPDKLRw1SW11BhQBYS5GyWmhlGK-ZsjrjYLhNgRsxJw9_vV3vP0cThsMp8kSucBCci1zHX3HxAwJHYQ8 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2025.3579433 |
DatabaseName | Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 16 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 7UA 8FD 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ C1K CS3 DU5 EBS F1W F5P FR3 H8D H96 HZ~ IFIPE IPLJI JAVBF KR7 L.G L7M LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R |
ID | FETCH-LOGICAL-p185t-14c92a794f3263145f4b0fab7147f7c1ca11ad4360d375e02d05f7821e2f612e3 |
ISSN | 0196-2892 |
IngestDate | Tue Jul 22 18:41:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p185t-14c92a794f3263145f4b0fab7147f7c1ca11ad4360d375e02d05f7821e2f612e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3223974332 |
PQPubID | 85465 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3223974332 |
PublicationCentury | 2000 |
PublicationDate | 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 20250101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationYear | 2025 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0014517 |
Score | 2.4629912 |
Snippet | Collaboratively utilizing the complementary information provided by hyperspectral imagery and light detection and ranging (LiDAR) data will extend the... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 1 |
SubjectTerms | Aggregation Algorithms Classification Coders Frequency dependence Hyperspectral imaging Information processing Land cover Lidar Machine learning Upper bounds |
Title | Collaborative Classification of Hyperspectral and LiDAR Date Based on Dynamic Multiple Fractional Fourier Domains Fusion |
URI | https://www.proquest.com/docview/3223974332 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJ7QDBAXAbyA29VSpzYzfI41oYKdUMaqah4qRzHpn2gmZoETfuR-007viRNKULAS1S5udnny7n5XBB6x2NfKSWpF-TZiUeFEPBJUeZJ4eccRH7Ocr2je34xnMzopzmb93q3nailusoG4ua3eSX_Q1UYA7rqLNl_oGx7UxiA30BfOAKF4fhXND7bEvGntP0tdeRPqwVOwMi0uZQbVxJguhqdXgKpK9n_APIr13sFI9uUvn_exBYmG5vtANckrqXdqPjBdTBNUpcNIZ1Gq61F3Wii6Tputh--y6LJFzLx6xIAIfulDpZ3klL7Wl2r-IIXrZ9nWdR9WOL2nG9Lbn25y3q9rFfN8NTEIHyVq67TImC_OC1SExjaCYYYm54_bX2EcdsCqGzrMrZM06jeMLfGVeIco_HQA-PRcnbpmDk78UDlol1u79ipZdekI_dtyue-RDEFWdOPl18GeiKDkOmSeuFWfDYhAxefF8lsOl2k43l6D90PwGxx-YTtrhZlxKXv23d1u-zwiPd7D9jTDYzCkz5Gj5ylgk8t7J6gnlwfocNO_coj9MDED4vyKbregSLehSIuFN6BIobVxwaKWEMRGyhiONFBETdQxFsoYgdF7KCILRSfoVkyTs8mnmvq4V2Balh5hIo44DBFBYZDCEuiaOYrnkWERioSRHBCeE7DoZ-HEZN-kPtMgRpLZKBAG5fhc3SwLtbyBcJZHg9jn4dccp8qbeoEWahCXzFJRBSQl-i4WcKF-2rLBQgwUMF11b5Xf_77NXq4Re4xOqg2tXwDCmiVvTVUvQO5dIq8 |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Classification+of+Hyperspectral+and+LiDAR+Date+Based+on+Dynamic+Multiple+Fractional+Fourier+Domains+Fusion&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qin%2C+Boao&rft.au=Shou+Feng&rft.au=Zhao%2C+Chunhui&rft.au=Li%2C+Wei&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3579433&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |