Perovskite lead-free dielectrics for energy storage applications

The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implemen...

Full description

Saved in:
Bibliographic Details
Published inProgress in materials science Vol. 102; p. 72
Main Authors Yang, Letao, Kong, Xi, Li, Fei, Hao, Hua, Cheng, Zhenxiang, Liu, Hanxing, Li, Jing-Feng, Zhang, Shujun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier BV 01.05.2019
Subjects
Online AccessGet full text
ISSN0079-6425
1873-2208
DOI10.1016/j.pmatsci.2018.12.005

Cover

Loading…
Abstract The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implementation of the electricity generated from these renewable sources. In step with the development of energy storage technology and the power electronics industry, dielectric materials with high energy density are in high demand. The dielectrics with a medium dielectric constant, high breakdown strength, and low polarization hysteresis are the most promising candidates for high-power energy storage applications. Inspiring energy densities have been achieved in current dielectrics, but challenges exist for practical applications, where the underlying mechanisms need to be understood for further enhancing their properties to meet future energy requirements. In this review, we summarize the principles of dielectric energy-storage applications, and recent developments on different types of dielectrics, namely linear dielectrics, paraelectrics, ferroelectrics, and antiferroelectrics, are surveyed, focusing on perovskite lead-free dielectrics. The new achievements of polymer-ceramic composites in energy-storage applications are also reviewed. The pros and cons of each type of dielectric, the existing challenges, and future perspectives are presented and discussed with respect to specific applications.
AbstractList The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implementation of the electricity generated from these renewable sources. In step with the development of energy storage technology and the power electronics industry, dielectric materials with high energy density are in high demand. The dielectrics with a medium dielectric constant, high breakdown strength, and low polarization hysteresis are the most promising candidates for high-power energy storage applications. Inspiring energy densities have been achieved in current dielectrics, but challenges exist for practical applications, where the underlying mechanisms need to be understood for further enhancing their properties to meet future energy requirements. In this review, we summarize the principles of dielectric energy-storage applications, and recent developments on different types of dielectrics, namely linear dielectrics, paraelectrics, ferroelectrics, and antiferroelectrics, are surveyed, focusing on perovskite lead-free dielectrics. The new achievements of polymer-ceramic composites in energy-storage applications are also reviewed. The pros and cons of each type of dielectric, the existing challenges, and future perspectives are presented and discussed with respect to specific applications.
Author Kong, Xi
Liu, Hanxing
Li, Jing-Feng
Yang, Letao
Cheng, Zhenxiang
Li, Fei
Zhang, Shujun
Hao, Hua
Author_xml – sequence: 1
  givenname: Letao
  surname: Yang
  fullname: Yang, Letao
– sequence: 2
  givenname: Xi
  surname: Kong
  fullname: Kong, Xi
– sequence: 3
  givenname: Fei
  surname: Li
  fullname: Li, Fei
– sequence: 4
  givenname: Hua
  surname: Hao
  fullname: Hao, Hua
– sequence: 5
  givenname: Zhenxiang
  surname: Cheng
  fullname: Cheng, Zhenxiang
– sequence: 6
  givenname: Hanxing
  surname: Liu
  fullname: Liu, Hanxing
– sequence: 7
  givenname: Jing-Feng
  surname: Li
  fullname: Li, Jing-Feng
– sequence: 8
  givenname: Shujun
  surname: Zhang
  fullname: Zhang, Shujun
BookMark eNotjV1LwzAUQINMcJv-BKHgc-u96Udy35ShUxjogz6PtLkZrbWpSSb47x3o0-G8nLMSi8lPLMQ1QoGAze1QzJ8mxa4vJKAuUBYA9ZlYolZlLiXohVgCKMqbStYXYhXjACdHoKW4e-Xgv-NHnzgb2djcBebM9jxyl0Lfxcz5kPHE4fCTxeSDOXBm5nnsO5N6P8VLce7MGPnqn2vx_vjwtnnKdy_b5839Lp9Rlyk3pDU1rTZWlUhtXdWSVNtSB4wobeMcMlWKXUtoNbXUgCmVdU1V2YrRlWtx89edg_86ckz7wR_DdFruJRJJqRXI8hfecFAz
ContentType Journal Article
Copyright Copyright Elsevier BV May 2019
Copyright_xml – notice: Copyright Elsevier BV May 2019
DBID 7SR
8BQ
8FD
JG9
DOI 10.1016/j.pmatsci.2018.12.005
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2208
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
7SR
8BQ
8FD
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JG9
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSM
SSZ
T5K
WH7
ZMT
~02
~G-
ID FETCH-LOGICAL-p183t-a98896b8ad7319b545297bb9c0e112d6ff1e947efb91d89b960a37df644d4e1f3
ISSN 0079-6425
IngestDate Fri Jul 25 06:02:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-a98896b8ad7319b545297bb9c0e112d6ff1e947efb91d89b960a37df644d4e1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2199228702
PQPubID 2045412
ParticipantIDs proquest_journals_2199228702
PublicationCentury 2000
PublicationDate 20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 20190501
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress in materials science
PublicationYear 2019
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0007109
Score 2.7116508
SecondaryResourceType review_article
Snippet The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards...
SourceID proquest
SourceType Aggregation Database
StartPage 72
SubjectTerms Antiferroelectricity
Clean energy
Dielectric breakdown
Dielectric strength
Energy
Energy consumption
Energy requirements
Energy storage
Ferroelectric materials
Flux density
Lead free
Materials science
Perovskites
Polymer matrix composites
Renewable energy sources
Title Perovskite lead-free dielectrics for energy storage applications
URI https://www.proquest.com/docview/2199228702
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYExI7IMYPMShTDtwql8b5YfsGQq0q1AGHFvVW2bEjdYcWtWGHHfa37z07JJ5A09glihwpsfNZn5_f-54fIRcS44J5FtOsjBVNuQIeTFRGU6UKJjPLkgTznb_d5aNpejvLZm2ZO5ddUule8fPNvJL_QRXaAFfMkn0Hss1LoQHuAV-4AsJw_SeMH-x69WOD_les_mBouba2axa-tA0ev-zO8_bZfaiCRH1OGLEOLdMHFGoh7S2WXbBiffe79QLZcEPtXR7bSq0arq5VvbNFo-5xEoGhXbT85jyyo2cVehkwsSkLvQxt-stjyKZcUti_-Ki09QQqeEIZ64s_GLbPAo70pXpeUbf3InzvPcEYYXCouhPOU9vP2rXqJT5_dz8fTsfj-WQwm3wgH2G-MSxf0fvV6ntQZOqW4bqTbfrW5ZsfebUYOwtjsk_26q1BdO1x_ky27PKAfAoOjDwgO06wW2wOyVWLfdRgHwXYR4B95LGPauyjEPsjMh0OJjcjWlfDoE9AuxVVUgiZa6EMB9rUWBtecq1l0bdgM5u8LGMrU25LLWMjpIatqUq4KcHgNamNy-SYbC9XS3tCIsukjrXiZc7j1DAui1RIplPOlLB5br6QzsuvmNfTfTNnKFTGsDg7_fvjM7LbzqAO2a7Wz_YcLLdKf3UI_QZgU0Sa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+lead-free+dielectrics+for+energy+storage+applications&rft.jtitle=Progress+in+materials+science&rft.au=Yang%2C+Letao&rft.au=Kong%2C+Xi&rft.au=Li%2C+Fei&rft.au=Hao%2C+Hua&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0079-6425&rft.eissn=1873-2208&rft.volume=102&rft.spage=72&rft_id=info:doi/10.1016%2Fj.pmatsci.2018.12.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6425&client=summon