Perovskite lead-free dielectrics for energy storage applications
The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implemen...
Saved in:
Published in | Progress in materials science Vol. 102; p. 72 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier BV
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0079-6425 1873-2208 |
DOI | 10.1016/j.pmatsci.2018.12.005 |
Cover
Loading…
Abstract | The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implementation of the electricity generated from these renewable sources. In step with the development of energy storage technology and the power electronics industry, dielectric materials with high energy density are in high demand. The dielectrics with a medium dielectric constant, high breakdown strength, and low polarization hysteresis are the most promising candidates for high-power energy storage applications. Inspiring energy densities have been achieved in current dielectrics, but challenges exist for practical applications, where the underlying mechanisms need to be understood for further enhancing their properties to meet future energy requirements. In this review, we summarize the principles of dielectric energy-storage applications, and recent developments on different types of dielectrics, namely linear dielectrics, paraelectrics, ferroelectrics, and antiferroelectrics, are surveyed, focusing on perovskite lead-free dielectrics. The new achievements of polymer-ceramic composites in energy-storage applications are also reviewed. The pros and cons of each type of dielectric, the existing challenges, and future perspectives are presented and discussed with respect to specific applications. |
---|---|
AbstractList | The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards the development of efficient, clean, and renewable energy sources. Efficient electrical energy storage solutions are keys to effective implementation of the electricity generated from these renewable sources. In step with the development of energy storage technology and the power electronics industry, dielectric materials with high energy density are in high demand. The dielectrics with a medium dielectric constant, high breakdown strength, and low polarization hysteresis are the most promising candidates for high-power energy storage applications. Inspiring energy densities have been achieved in current dielectrics, but challenges exist for practical applications, where the underlying mechanisms need to be understood for further enhancing their properties to meet future energy requirements. In this review, we summarize the principles of dielectric energy-storage applications, and recent developments on different types of dielectrics, namely linear dielectrics, paraelectrics, ferroelectrics, and antiferroelectrics, are surveyed, focusing on perovskite lead-free dielectrics. The new achievements of polymer-ceramic composites in energy-storage applications are also reviewed. The pros and cons of each type of dielectric, the existing challenges, and future perspectives are presented and discussed with respect to specific applications. |
Author | Kong, Xi Liu, Hanxing Li, Jing-Feng Yang, Letao Cheng, Zhenxiang Li, Fei Zhang, Shujun Hao, Hua |
Author_xml | – sequence: 1 givenname: Letao surname: Yang fullname: Yang, Letao – sequence: 2 givenname: Xi surname: Kong fullname: Kong, Xi – sequence: 3 givenname: Fei surname: Li fullname: Li, Fei – sequence: 4 givenname: Hua surname: Hao fullname: Hao, Hua – sequence: 5 givenname: Zhenxiang surname: Cheng fullname: Cheng, Zhenxiang – sequence: 6 givenname: Hanxing surname: Liu fullname: Liu, Hanxing – sequence: 7 givenname: Jing-Feng surname: Li fullname: Li, Jing-Feng – sequence: 8 givenname: Shujun surname: Zhang fullname: Zhang, Shujun |
BookMark | eNotjV1LwzAUQINMcJv-BKHgc-u96Udy35ShUxjogz6PtLkZrbWpSSb47x3o0-G8nLMSi8lPLMQ1QoGAze1QzJ8mxa4vJKAuUBYA9ZlYolZlLiXohVgCKMqbStYXYhXjACdHoKW4e-Xgv-NHnzgb2djcBebM9jxyl0Lfxcz5kPHE4fCTxeSDOXBm5nnsO5N6P8VLce7MGPnqn2vx_vjwtnnKdy_b5839Lp9Rlyk3pDU1rTZWlUhtXdWSVNtSB4wobeMcMlWKXUtoNbXUgCmVdU1V2YrRlWtx89edg_86ckz7wR_DdFruJRJJqRXI8hfecFAz |
ContentType | Journal Article |
Copyright | Copyright Elsevier BV May 2019 |
Copyright_xml | – notice: Copyright Elsevier BV May 2019 |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.pmatsci.2018.12.005 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2208 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 7SR 8BQ 8FD 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGRNS AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JG9 KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSH SSM SSZ T5K WH7 ZMT ~02 ~G- |
ID | FETCH-LOGICAL-p183t-a98896b8ad7319b545297bb9c0e112d6ff1e947efb91d89b960a37df644d4e1f3 |
ISSN | 0079-6425 |
IngestDate | Fri Jul 25 06:02:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p183t-a98896b8ad7319b545297bb9c0e112d6ff1e947efb91d89b960a37df644d4e1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2199228702 |
PQPubID | 2045412 |
ParticipantIDs | proquest_journals_2199228702 |
PublicationCentury | 2000 |
PublicationDate | 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 20190501 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress in materials science |
PublicationYear | 2019 |
Publisher | Elsevier BV |
Publisher_xml | – name: Elsevier BV |
SSID | ssj0007109 |
Score | 2.7116508 |
SecondaryResourceType | review_article |
Snippet | The projected increase in world energy consumption within the next 50 years, coupled with low emission requirements, has inspired an enormous effort towards... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 72 |
SubjectTerms | Antiferroelectricity Clean energy Dielectric breakdown Dielectric strength Energy Energy consumption Energy requirements Energy storage Ferroelectric materials Flux density Lead free Materials science Perovskites Polymer matrix composites Renewable energy sources |
Title | Perovskite lead-free dielectrics for energy storage applications |
URI | https://www.proquest.com/docview/2199228702 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYExI7IMYPMShTDtwql8b5YfsGQq0q1AGHFvVW2bEjdYcWtWGHHfa37z07JJ5A09glihwpsfNZn5_f-54fIRcS44J5FtOsjBVNuQIeTFRGU6UKJjPLkgTznb_d5aNpejvLZm2ZO5ddUule8fPNvJL_QRXaAFfMkn0Hss1LoQHuAV-4AsJw_SeMH-x69WOD_les_mBouba2axa-tA0ev-zO8_bZfaiCRH1OGLEOLdMHFGoh7S2WXbBiffe79QLZcEPtXR7bSq0arq5VvbNFo-5xEoGhXbT85jyyo2cVehkwsSkLvQxt-stjyKZcUti_-Ki09QQqeEIZ64s_GLbPAo70pXpeUbf3InzvPcEYYXCouhPOU9vP2rXqJT5_dz8fTsfj-WQwm3wgH2G-MSxf0fvV6ntQZOqW4bqTbfrW5ZsfebUYOwtjsk_26q1BdO1x_ky27PKAfAoOjDwgO06wW2wOyVWLfdRgHwXYR4B95LGPauyjEPsjMh0OJjcjWlfDoE9AuxVVUgiZa6EMB9rUWBtecq1l0bdgM5u8LGMrU25LLWMjpIatqUq4KcHgNamNy-SYbC9XS3tCIsukjrXiZc7j1DAui1RIplPOlLB5br6QzsuvmNfTfTNnKFTGsDg7_fvjM7LbzqAO2a7Wz_YcLLdKf3UI_QZgU0Sa |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+lead-free+dielectrics+for+energy+storage+applications&rft.jtitle=Progress+in+materials+science&rft.au=Yang%2C+Letao&rft.au=Kong%2C+Xi&rft.au=Li%2C+Fei&rft.au=Hao%2C+Hua&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0079-6425&rft.eissn=1873-2208&rft.volume=102&rft.spage=72&rft_id=info:doi/10.1016%2Fj.pmatsci.2018.12.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6425&client=summon |