d‐Orbital Electron Delocalization Realized by Axial Fe4C Atomic Clusters Delivers High‐Performance Fe–N–C Catalysts for Oxygen Reduction Reaction

Fe–N–C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe–pyrrolic N4 have been proven to be extremely active for...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 39
Main Authors Long‐Ji Yuan, Liu, Bo, Li‐xiao Shen, Yun‐Kun Dai, Li, Qi, Liu, Chang, Gong, Wei, Xu‐Lei Sui, Zhen‐Bo Wang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fe–N–C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe–pyrrolic N4 have been proven to be extremely active for ORR. However, forming a stable Fe–pyrrolic N4 structure is a huge challenge. Here, a Cyan‐Fe–N–C catalyst with Fe–pyrrolic N4 as the intrinsic active center is constructed with the help of axial Fe4C atomic clusters, which shows a half‐wave potential of up to 0.836 V (vs. RHE) in the acid environment. More remarkably, it delivers a high power density of 870 and 478 mW cm−2 at 1.0 bar in H2–O2 and H2–Air fuel cells, respectively. According to theoretical calculation and in situ spectroscopy, the axial Fe4C can provide strong electronic perturbation to Fe–N4 active centers, leading to the d‐orbital electron delocalization of Fe and forming the Fe–pyrrolic N4 bond with high charge distribution, which stabilizes the Fe–pyrrolic N4 structure and optimizes the OH* adsorption during the catalytic process. This work proposes a new strategy to adjust the electronic structure of single‐atom catalysts based on the strong interaction between single atoms and atomic clusters.
AbstractList Fe–N–C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe–pyrrolic N4 have been proven to be extremely active for ORR. However, forming a stable Fe–pyrrolic N4 structure is a huge challenge. Here, a Cyan‐Fe–N–C catalyst with Fe–pyrrolic N4 as the intrinsic active center is constructed with the help of axial Fe4C atomic clusters, which shows a half‐wave potential of up to 0.836 V (vs. RHE) in the acid environment. More remarkably, it delivers a high power density of 870 and 478 mW cm−2 at 1.0 bar in H2–O2 and H2–Air fuel cells, respectively. According to theoretical calculation and in situ spectroscopy, the axial Fe4C can provide strong electronic perturbation to Fe–N4 active centers, leading to the d‐orbital electron delocalization of Fe and forming the Fe–pyrrolic N4 bond with high charge distribution, which stabilizes the Fe–pyrrolic N4 structure and optimizes the OH* adsorption during the catalytic process. This work proposes a new strategy to adjust the electronic structure of single‐atom catalysts based on the strong interaction between single atoms and atomic clusters.
Author Zhen‐Bo Wang
Liu, Bo
Yun‐Kun Dai
Long‐Ji Yuan
Li, Qi
Li‐xiao Shen
Xu‐Lei Sui
Liu, Chang
Gong, Wei
Author_xml – sequence: 1
  fullname: Long‐Ji Yuan
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
– sequence: 3
  fullname: Li‐xiao Shen
– sequence: 4
  fullname: Yun‐Kun Dai
– sequence: 5
  givenname: Qi
  surname: Li
  fullname: Li, Qi
– sequence: 6
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
– sequence: 7
  givenname: Wei
  surname: Gong
  fullname: Gong, Wei
– sequence: 8
  fullname: Xu‐Lei Sui
– sequence: 9
  fullname: Zhen‐Bo Wang
BookMark eNo1kM9Kw0AQxhepYFu9el7wnDq7ySbZY4mtFYoV0XPZ7E5qSprUbCKtpz6C4MnX65O48c9hmG-Y-b4fzID0yqpEQi4ZjBgAv1Zmo0YcuA9CBuKE9JngzAtAih7pg_SFJ8MgPiMDa9cAIEMI--TLHA8fizrNG1XQSYG6qauS3mBRaVXk76rJ3fiInUZD0z0d73J3OcUgoeOm2uSaJkVrG6xt58rfOjHLVy8u9gHrrKo3qtToDMfD572rhCbKsfa2sdRt6WK3X2GHMK3-h_2Ic3KaqcLixV8fkufp5CmZefPF7V0ynntbFvuNJ6MYs0hxLoVGg1ykPqRaIWPSaIAQdIoYhFxkEkwUsdgoGTuLylCkOgN_SK5-c7d19dqibZbrqq1Lh1zyOJRMAHM__QbqA3IW
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.202305945
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
7SR
8-0
8-1
8-3
8-4
8-5
8BQ
8FD
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JG9
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-p183t-978ef7a2295cede25b30bcae119dc0060cbee4625f90d7718da988efafe5bcf03
ISSN 0935-9648
IngestDate Fri Jul 25 02:57:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-978ef7a2295cede25b30bcae119dc0060cbee4625f90d7718da988efafe5bcf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2869150102
PQPubID 2045203
ParticipantIDs proquest_journals_2869150102
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
SSID ssj0009606
Score 2.6612275
Snippet Fe–N–C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Atomic clusters
Catalysts
Charge distribution
Chemical reduction
Electronic structure
Fuel cells
Oxygen reduction reactions
Perturbation
Proton exchange membrane fuel cells
Title d‐Orbital Electron Delocalization Realized by Axial Fe4C Atomic Clusters Delivers High‐Performance Fe–N–C Catalysts for Oxygen Reduction Reaction
URI https://www.proquest.com/docview/2869150102
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucCh4imgBfnALdqy2Ud2faxCoqqEBEEi0lPk16qR0Aa1u1LLqT8BiRM_jWt_CTP22tmoCBUOsVZ27HU8X-wZa-YbQl7HUseCA3iFyvC2ihcBl4UKMGyTaTjyuMTY4feT_tE8OV6ki07nV8trqa7Egfz2x7iS_5Eq1IFcMUr2HyTrB4UKeAb5QgkShvJWMlbeVWF6JjD7R3fYZLWBfcScUk2UJfrKw7PVNg8v8JZ8pBPYFSoMSu4OvtTIl3COvYyfhnH_8IN_aAUXjLSrjif-yQQSIrlJZdgdutOLS5gzvFRZblp8vfQIcJy3zvsAdGa7WKjtftar8lRjimd_QzFGr2E3l-NV96Ru-RGtaoPQ9abCfxV-5rr76XQT63ZSl77xXQ1rxFftS48o9l5dt91a2xedcRqwvuXzPNDNNh-h5WzTe7pzwNKmNHi3DEs3zhfLV8uVoawC6y1llgxzm8h7Ml2O5uPxcjZczO6QuxFYMJhc4-3HDbMZGo6GBrKZnOMTDaM326Pf0BGM4jN7QHYbi4UeWvg9JB1dPiL3WzyWj8lPdX31vYEgdRCk2xCkDoJUXFIDQYoQpBaC1EGQOghShCAM2wIfdLi--jGBz4B6wFFopRZw1AOOOsA9IfPRcDY4CpqcH8FXOFyqgGW5LjKOSeYBgTpKRRwKyXWvx5RE8iAptE7AaC9YqDJQrBRnOXThhU6FLML4Kdkp16V-Rmjay8JICChYmoiU5UkuIy76KgolZ6l-Tvbdyi6bP_X5Msr7DGwkULtf_L15j9zbAHOf7FRntX4J-mklXhlJ_wbzH5Rv
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=d%E2%80%90Orbital+Electron+Delocalization+Realized+by+Axial+Fe4C+Atomic+Clusters+Delivers+High%E2%80%90Performance+Fe%E2%80%93N%E2%80%93C+Catalysts+for+Oxygen+Reduction+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Long%E2%80%90Ji+Yuan&rft.au=Liu%2C+Bo&rft.au=Li%E2%80%90xiao+Shen&rft.au=Yun%E2%80%90Kun+Dai&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=39&rft_id=info:doi/10.1002%2Fadma.202305945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon