SHREC 2021: 3D point cloud change detection for street scenes

The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-sc...

Full description

Saved in:
Bibliographic Details
Published inComputers & graphics Vol. 99; p. 192
Main Authors Ku, Tao, Galanakis, Sam, Boom, Bas, Veltkamp, Remco C, Bangera, Darshan, Gangisetty, Shankar, Stagakis, Nikolaos, Arvanitis, Gerasimos, Moustakas, Konstantinos
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Science Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-scene dataset for 3D point cloud change detection. The dataset consists of 866 3D object pairs in year 2016 and 2020 from 78 large-scale street scene 3D point clouds. Our goal is to detect the changes from multi-temporal point clouds in a complex street environment. We compare three methods on this benchmark, with one handcrafted (PoChaDeHH) and the other two learning-based (HGI-CD and SiamGCN). The results show that the handcrafted algorithm has balanced performance over all classes, while learning-based methods achieve overwhelming performance but suffer from the class-imbalanced problem and may fail on minority classes. The randomized oversampling metric applied in SiamGCN can alleviate this problem. Also, different siamese network architecture in HGI-CD and SiamGCN contribute to the designing of a network for the 3D change detection task.
AbstractList The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-scene dataset for 3D point cloud change detection. The dataset consists of 866 3D object pairs in year 2016 and 2020 from 78 large-scale street scene 3D point clouds. Our goal is to detect the changes from multi-temporal point clouds in a complex street environment. We compare three methods on this benchmark, with one handcrafted (PoChaDeHH) and the other two learning-based (HGI-CD and SiamGCN). The results show that the handcrafted algorithm has balanced performance over all classes, while learning-based methods achieve overwhelming performance but suffer from the class-imbalanced problem and may fail on minority classes. The randomized oversampling metric applied in SiamGCN can alleviate this problem. Also, different siamese network architecture in HGI-CD and SiamGCN contribute to the designing of a network for the 3D change detection task.
Author Bangera, Darshan
Ku, Tao
Boom, Bas
Stagakis, Nikolaos
Veltkamp, Remco C
Gangisetty, Shankar
Moustakas, Konstantinos
Arvanitis, Gerasimos
Galanakis, Sam
Author_xml – sequence: 1
  givenname: Tao
  surname: Ku
  fullname: Ku, Tao
– sequence: 2
  givenname: Sam
  surname: Galanakis
  fullname: Galanakis, Sam
– sequence: 3
  givenname: Bas
  surname: Boom
  fullname: Boom, Bas
– sequence: 4
  givenname: Remco
  surname: Veltkamp
  middlename: C
  fullname: Veltkamp, Remco C
– sequence: 5
  givenname: Darshan
  surname: Bangera
  fullname: Bangera, Darshan
– sequence: 6
  givenname: Shankar
  surname: Gangisetty
  fullname: Gangisetty, Shankar
– sequence: 7
  givenname: Nikolaos
  surname: Stagakis
  fullname: Stagakis, Nikolaos
– sequence: 8
  givenname: Gerasimos
  surname: Arvanitis
  fullname: Arvanitis, Gerasimos
– sequence: 9
  givenname: Konstantinos
  surname: Moustakas
  fullname: Moustakas, Konstantinos
BookMark eNotjV1LwzAUQINMsJv-AN8CPrfe5KZNKvggdTphIPjxPNL0dq6MpDbp_9ehT-fpnLNkCx88MXYtoBAgqtuhcHZfSJCiAF0AqDOWCaMx15VRC5YB1Do3qsYLtoxxAAApK5Wx-_fN27rhJ_GO4yMfw8En7o5h7rj7sn5PvKNELh2C532YeEwTUeLRkad4yc57e4x09c8V-3xafzSbfPv6_NI8bPNRGEx5ZZwqdU_UgbS2hkpQ6xySJm0RHanS9qUEI9rWOkKJwkoE08u2FFiSwhW7-euOU_ieKabdEObJ_y53sqzrWoHSGn8AF75K8w
ContentType Journal Article
Copyright Copyright Elsevier Science Ltd. Oct 2021
Copyright_xml – notice: Copyright Elsevier Science Ltd. Oct 2021
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cag.2021.07.004
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7684
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7SC
8FD
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEIPS
AEKER
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JQ2
KOM
L7M
LG9
L~C
L~D
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSV
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
ID FETCH-LOGICAL-p183t-68c457feed02aa9061ebcc3e7e7a33ce45af52081bbace3231a2308f2b5135e43
ISSN 0097-8493
IngestDate Fri Jul 25 05:40:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-68c457feed02aa9061ebcc3e7e7a33ce45af52081bbace3231a2308f2b5135e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2599940477
PQPubID 2047474
ParticipantIDs proquest_journals_2599940477
PublicationCentury 2000
PublicationDate 20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211001
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & graphics
PublicationYear 2021
Publisher Elsevier Science Ltd
Publisher_xml – name: Elsevier Science Ltd
SSID ssj0002264
Score 2.4639575
SecondaryResourceType retracted_publication
Snippet The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a...
SourceID proquest
SourceType Aggregation Database
StartPage 192
SubjectTerms Algorithms
Change detection
Computer architecture
Datasets
Machine learning
Oversampling
Shape recognition
Three dimensional models
Title SHREC 2021: 3D point cloud change detection for street scenes
URI https://www.proquest.com/docview/2599940477
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XJYDApYVb_nArUrVxHbccENQVAECiW1XvVW266x4tEU0vXDgtzP2OGlZEFq4RFGivPQ542_G38wQcsjlIJVGiaiRCxbxnKtIJ7mIhI6tlq5gnPYq36u03eXnPdGb9dj02SWFrpvnD_NKvoMqHANcXZbsF5CtbgoHYB_whS0gDNv_wvh3-6Z1UktgAnWOPXMtF25HRc08jKeDkNJbG9jCmkpQOMFFaFfCKYgHyyoFobvDxI8FX8Z6Tgd_MfW4qnEl13GKSEc-Mao8rLx64OG4jFFd-8c-FPdq-IhgDs04BGZDqCGJK9FaiH-VOTCl2ZkJj7xtzWC-49jvsG7RnDYli9xS37y9xYZIwWDG2AnvnSHHmMIdOOl_6-5VfIVVbFT8tmj21XX_rHt52e-0ep1FspyAt-DMXf1lpvRxucJYjBRfsFzc9jK_fx7wbkr2PKOzRlaDg0CPEe11smBHG2RlrmzkT4K4U3e_I8pOqUedetQpok4r1CmgThF1iqhvku5Zq3PSjkIbjOgR7G0RpU3DhcyBzDQSpTIgYFYbw6y0UjFmLBcqFwlQO62VsQwIuwK_spnDXxYzYTn7RZZG45HdIlQ1dJZy1QSebngCv2Js89gwrlMuGOdim-yVX98P43zSBwc5y3iDS7nz-eld8mM2avbIUvE0tftA2Qp94AF5BV4lPG8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SHREC+2021%3A+3D+point+cloud+change+detection+for+street+scenes&rft.jtitle=Computers+%26+graphics&rft.au=Ku%2C+Tao&rft.au=Galanakis%2C+Sam&rft.au=Boom%2C+Bas&rft.au=Veltkamp%2C+Remco+C&rft.date=2021-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0097-8493&rft.eissn=1873-7684&rft.volume=99&rft.spage=192&rft_id=info:doi/10.1016%2Fj.cag.2021.07.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon