SHREC 2021: 3D point cloud change detection for street scenes
The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-sc...
Saved in:
Published in | Computers & graphics Vol. 99; p. 192 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Science Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-scene dataset for 3D point cloud change detection. The dataset consists of 866 3D object pairs in year 2016 and 2020 from 78 large-scale street scene 3D point clouds. Our goal is to detect the changes from multi-temporal point clouds in a complex street environment. We compare three methods on this benchmark, with one handcrafted (PoChaDeHH) and the other two learning-based (HGI-CD and SiamGCN). The results show that the handcrafted algorithm has balanced performance over all classes, while learning-based methods achieve overwhelming performance but suffer from the class-imbalanced problem and may fail on minority classes. The randomized oversampling metric applied in SiamGCN can alleviate this problem. Also, different siamese network architecture in HGI-CD and SiamGCN contribute to the designing of a network for the 3D change detection task. |
---|---|
AbstractList | The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-scene dataset for 3D point cloud change detection. The dataset consists of 866 3D object pairs in year 2016 and 2020 from 78 large-scale street scene 3D point clouds. Our goal is to detect the changes from multi-temporal point clouds in a complex street environment. We compare three methods on this benchmark, with one handcrafted (PoChaDeHH) and the other two learning-based (HGI-CD and SiamGCN). The results show that the handcrafted algorithm has balanced performance over all classes, while learning-based methods achieve overwhelming performance but suffer from the class-imbalanced problem and may fail on minority classes. The randomized oversampling metric applied in SiamGCN can alleviate this problem. Also, different siamese network architecture in HGI-CD and SiamGCN contribute to the designing of a network for the 3D change detection task. |
Author | Bangera, Darshan Ku, Tao Boom, Bas Stagakis, Nikolaos Veltkamp, Remco C Gangisetty, Shankar Moustakas, Konstantinos Arvanitis, Gerasimos Galanakis, Sam |
Author_xml | – sequence: 1 givenname: Tao surname: Ku fullname: Ku, Tao – sequence: 2 givenname: Sam surname: Galanakis fullname: Galanakis, Sam – sequence: 3 givenname: Bas surname: Boom fullname: Boom, Bas – sequence: 4 givenname: Remco surname: Veltkamp middlename: C fullname: Veltkamp, Remco C – sequence: 5 givenname: Darshan surname: Bangera fullname: Bangera, Darshan – sequence: 6 givenname: Shankar surname: Gangisetty fullname: Gangisetty, Shankar – sequence: 7 givenname: Nikolaos surname: Stagakis fullname: Stagakis, Nikolaos – sequence: 8 givenname: Gerasimos surname: Arvanitis fullname: Arvanitis, Gerasimos – sequence: 9 givenname: Konstantinos surname: Moustakas fullname: Moustakas, Konstantinos |
BookMark | eNotjV1LwzAUQINMsJv-AN8CPrfe5KZNKvggdTphIPjxPNL0dq6MpDbp_9ehT-fpnLNkCx88MXYtoBAgqtuhcHZfSJCiAF0AqDOWCaMx15VRC5YB1Do3qsYLtoxxAAApK5Wx-_fN27rhJ_GO4yMfw8En7o5h7rj7sn5PvKNELh2C532YeEwTUeLRkad4yc57e4x09c8V-3xafzSbfPv6_NI8bPNRGEx5ZZwqdU_UgbS2hkpQ6xySJm0RHanS9qUEI9rWOkKJwkoE08u2FFiSwhW7-euOU_ieKabdEObJ_y53sqzrWoHSGn8AF75K8w |
ContentType | Journal Article |
Copyright | Copyright Elsevier Science Ltd. Oct 2021 |
Copyright_xml | – notice: Copyright Elsevier Science Ltd. Oct 2021 |
DBID | 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cag.2021.07.004 |
DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7684 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7SC 8FD 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEIPS AEKER AFTJW AFXIZ AGCQF AGHFR AGRNS AGSOS AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JQ2 KOM L7M LG9 L~C L~D M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SSV SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- |
ID | FETCH-LOGICAL-p183t-68c457feed02aa9061ebcc3e7e7a33ce45af52081bbace3231a2308f2b5135e43 |
ISSN | 0097-8493 |
IngestDate | Fri Jul 25 05:40:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p183t-68c457feed02aa9061ebcc3e7e7a33ce45af52081bbace3231a2308f2b5135e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2599940477 |
PQPubID | 2047474 |
ParticipantIDs | proquest_journals_2599940477 |
PublicationCentury | 2000 |
PublicationDate | 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers & graphics |
PublicationYear | 2021 |
Publisher | Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Science Ltd |
SSID | ssj0002264 |
Score | 2.4639575 |
SecondaryResourceType | retracted_publication |
Snippet | The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. However, the analysis of the output data is a... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 192 |
SubjectTerms | Algorithms Change detection Computer architecture Datasets Machine learning Oversampling Shape recognition Three dimensional models |
Title | SHREC 2021: 3D point cloud change detection for street scenes |
URI | https://www.proquest.com/docview/2599940477 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XJYDApYVb_nArUrVxHbccENQVAECiW1XvVW266x4tEU0vXDgtzP2OGlZEFq4RFGivPQ542_G38wQcsjlIJVGiaiRCxbxnKtIJ7mIhI6tlq5gnPYq36u03eXnPdGb9dj02SWFrpvnD_NKvoMqHANcXZbsF5CtbgoHYB_whS0gDNv_wvh3-6Z1UktgAnWOPXMtF25HRc08jKeDkNJbG9jCmkpQOMFFaFfCKYgHyyoFobvDxI8FX8Z6Tgd_MfW4qnEl13GKSEc-Mao8rLx64OG4jFFd-8c-FPdq-IhgDs04BGZDqCGJK9FaiH-VOTCl2ZkJj7xtzWC-49jvsG7RnDYli9xS37y9xYZIwWDG2AnvnSHHmMIdOOl_6-5VfIVVbFT8tmj21XX_rHt52e-0ep1FspyAt-DMXf1lpvRxucJYjBRfsFzc9jK_fx7wbkr2PKOzRlaDg0CPEe11smBHG2RlrmzkT4K4U3e_I8pOqUedetQpok4r1CmgThF1iqhvku5Zq3PSjkIbjOgR7G0RpU3DhcyBzDQSpTIgYFYbw6y0UjFmLBcqFwlQO62VsQwIuwK_spnDXxYzYTn7RZZG45HdIlQ1dJZy1QSebngCv2Js89gwrlMuGOdim-yVX98P43zSBwc5y3iDS7nz-eld8mM2avbIUvE0tftA2Qp94AF5BV4lPG8 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SHREC+2021%3A+3D+point+cloud+change+detection+for+street+scenes&rft.jtitle=Computers+%26+graphics&rft.au=Ku%2C+Tao&rft.au=Galanakis%2C+Sam&rft.au=Boom%2C+Bas&rft.au=Veltkamp%2C+Remco+C&rft.date=2021-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0097-8493&rft.eissn=1873-7684&rft.volume=99&rft.spage=192&rft_id=info:doi/10.1016%2Fj.cag.2021.07.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |