Faber Series for L2 Holomorphic One-Forms on Riemann Surfaces with Boundary

Consider a compact surface R with distinguished points z1,…,zn and conformal maps fk from the unit disk into non-overlapping quasidisks on R taking 0 to zk. Let Σ be the Riemann surface obtained by removing the closures of the images of fk from R. We define forms which are meromorphic on R with pole...

Full description

Saved in:
Bibliographic Details
Published inComputational methods and function theory Vol. 25; no. 2; pp. 329 - 347
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.06.2025
Subjects
Online AccessGet full text
ISSN1617-9447
2195-3724
DOI10.1007/s40315-024-00529-4

Cover

Loading…
Abstract Consider a compact surface R with distinguished points z1,…,zn and conformal maps fk from the unit disk into non-overlapping quasidisks on R taking 0 to zk. Let Σ be the Riemann surface obtained by removing the closures of the images of fk from R. We define forms which are meromorphic on R with poles only at z1,…,zn, which we call Faber–Tietz forms. These are analogous to Faber polynomials in the sphere. We show that any L2 holomorphic one-form on Σ is uniquely expressible as a series of Faber–Tietz forms. This series converges both in L2(Σ) and uniformly on compact subsets of Σ.
AbstractList Consider a compact surface R with distinguished points z1,…,zn and conformal maps fk from the unit disk into non-overlapping quasidisks on R taking 0 to zk. Let Σ be the Riemann surface obtained by removing the closures of the images of fk from R. We define forms which are meromorphic on R with poles only at z1,…,zn, which we call Faber–Tietz forms. These are analogous to Faber polynomials in the sphere. We show that any L2 holomorphic one-form on Σ is uniquely expressible as a series of Faber–Tietz forms. This series converges both in L2(Σ) and uniformly on compact subsets of Σ.
BookMark eNotjctKAzEYRoNUsK2-gKuA62j-XCaTpRZrxYGC1XXJlU5pk5p0EN_eAV19m3PON0OTlFNA6BboPVCqHqqgHCShTBBKJdNEXKApAy0JV0xM0BQaUEQLoa7QrNb9CAnN-RS9LY0NBW9C6UPFMRfcMbzKh3zM5bTrHV6nQJa5HCvOCb_34WhSwpuhRONG4bs_7_BTHpI35ecaXUZzqOHmf-foc_n8sViRbv3yunjsyAlafiaNYM4yS23rtdA-RmCRWy88UC9BRRGU07z10oG0lkblnbWWGddwT0EyPkd3f91TyV9DqOftPg8ljZdbzmgjpYa25b-8zFFQ
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DOI 10.1007/s40315-024-00529-4
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 347
GroupedDBID 06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
ID FETCH-LOGICAL-p183t-642cb2b0b8d949dff12f3bd4d10d517f4e7c938d5c15bb0f7dcbbb2ac63d01523
ISSN 1617-9447
IngestDate Sun Jul 13 05:06:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-642cb2b0b8d949dff12f3bd4d10d517f4e7c938d5c15bb0f7dcbbb2ac63d01523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3206559188
PQPubID 2043941
PageCount 19
ParticipantIDs proquest_journals_3206559188
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0054933
Score 2.3200262
Snippet Consider a compact surface R with distinguished points z1,…,zn and conformal maps fk from the unit disk into non-overlapping quasidisks on R taking 0 to zk....
SourceID proquest
SourceType Aggregation Database
StartPage 329
SubjectTerms Conformal mapping
Polynomials
Riemann surfaces
Title Faber Series for L2 Holomorphic One-Forms on Riemann Surfaces with Boundary
URI https://www.proquest.com/docview/3206559188
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdtetkOY1tX9tEVHXYrKrEkf-jYjJrQpSmUBHILfpINPdQZiXvpX9-nL7chZXS9CCODbPST3pfeT4-QX7aMdlUA7jSVCiYr0Ew1RjHcSspmWqQSLBv5apqN5_JykS5ihezALungTD-8yCt5C6rYh7halux_INsPih34jPhiiwhj-yqMywrqtd3u6O66fMEJPx2jNLtb4ezd6tPrtmYlGqXuSODmtr6rWtzN9-vG5WG5EOzIlVXa5kX7Sg8xSuhrTPurnK0WdAumi5T-PmTA06fUpq2Qoc2HtqcUPaXFSUA0aZiS_hrMs9r1cVvQUeSe7BzFpucrh-XBn8lAEUIYXp0KP9KOpPbJGRtpq0wwNBSYO3MMjJ-ta7Gn18tyPpksZxeL2T454OgP8AE5OC9Ho2lUuujlCseliH8f-FGOJbnzjR2964yJ2UfyIXgB9NxD-ons1e1n8v6qv0J3c0j-OHCpB5ciuHTC6TNwaQ8uXbU0gEsjuNSCSyO4X8i8vJj9HrNQ-YL9RRHbMXQKNXAYQmGUVKZpEt4IMNIkQ5MmeSPrXCtRmFQnKcCwyY0GAF7pTBi077g4IoN21dZfCZUgKrBknSzLcZKqIisynaOGFlBBooffyHGci2VY2pul4GiZpiopiu__fv2DvHtaYMdk0K3v659opXVwEhB6BB6yPYU
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faber+Series+for+L2+Holomorphic+One-Forms+on+Riemann+Surfaces+with+Boundary&rft.jtitle=Computational+methods+and+function+theory&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=25&rft.issue=2&rft.spage=329&rft.epage=347&rft_id=info:doi/10.1007%2Fs40315-024-00529-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon