Solution of Liouville's Equation for Uncertainty Characterization of the Main Problem in Satellite Theory

This paper presents a closed form solution to Liouville's equation governing the evolution of the probability density function associated with the motion of a body in a central force field and subject to J2. It is shown that the application of transformation of variables formula for mapping unc...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 111; no. 3; p. 269
Main Authors Weisman, Ryan, Majji, Manoranjan, Alfriend, Kyle T
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a closed form solution to Liouville's equation governing the evolution of the probability density function associated with the motion of a body in a central force field and subject to J2. It is shown that the application of transformation of variables formula for mapping uncertainties is equivalent to the method of characteristics for computing the time evolution of the probability density function that forms the solution of the Liouville's partial differential equation. The insights derived from the nature of the solution to Liouville's equation are used to reduce the dimensionality of uncertainties in orbital element space. It is demonstrated that the uncertainty propagation is fastest in the semi-major axis and the mean anomaly phase sub-space. The results obtained for uncertainty propagation for the two body problem are applied to investigate the uncertainty propagation in the presence of the J2 perturbation using a combination of osculating and mean element perturbation theory. Analytical orbital uncertainty propagation calculations are validated using Monte-Carlo results for several representative orbits.
AbstractList This paper presents a closed form solution to Liouville's equation governing the evolution of the probability density function associated with the motion of a body in a central force field and subject to J2. It is shown that the application of transformation of variables formula for mapping uncertainties is equivalent to the method of characteristics for computing the time evolution of the probability density function that forms the solution of the Liouville's partial differential equation. The insights derived from the nature of the solution to Liouville's equation are used to reduce the dimensionality of uncertainties in orbital element space. It is demonstrated that the uncertainty propagation is fastest in the semi-major axis and the mean anomaly phase sub-space. The results obtained for uncertainty propagation for the two body problem are applied to investigate the uncertainty propagation in the presence of the J2 perturbation using a combination of osculating and mean element perturbation theory. Analytical orbital uncertainty propagation calculations are validated using Monte-Carlo results for several representative orbits.
Author Weisman, Ryan
Alfriend, Kyle T
Majji, Manoranjan
Author_xml – sequence: 1
  givenname: Ryan
  surname: Weisman
  fullname: Weisman, Ryan
– sequence: 2
  givenname: Manoranjan
  surname: Majji
  fullname: Majji, Manoranjan
– sequence: 3
  givenname: Kyle
  surname: Alfriend
  middlename: T
  fullname: Alfriend, Kyle T
BookMark eNo1UFFLwzAYDDLBbfoDfAv44FNrvqRJmkcZcwoThW3PI01TlpE1W5oK89db1D3dccfdwU3QqA2tRegeSM6UJE_mYLucEhA5AORUqCs0Bk5FBpyI0YUXit6gSdftCWGClWqM3Cr4PrnQ4tDgpQv9l_PePnZ4fur1r96EiDetsTFp16Yznu101CbZ6L71JZh2Fr8PNv6MofL2gAe60sl675LF650N8XyLrhvtO3v3j1O0eZmvZ6_Z8mPxNnteZkcoWcp4pSrgsjaq5pQwzUrNGikKUZSUyprVQBooBG9MbZmpKlNLSapSFYQbMFazKXr46z3GcOptl7b70Md2mNzS4SoqeQHAfgCx1V1M
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7SC
7TB
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3970/cmes.2016.111.269
DatabaseName Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
GroupedDBID -~X
7SC
7TB
8FD
AAFWJ
ABUWG
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
CCPQU
DWQXO
EBS
EJD
F5P
FR3
J9A
JQ2
KR7
L7M
L~C
L~D
OK1
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RTS
ID FETCH-LOGICAL-p183t-5b9b157dc9d5203a38a3f764648227d3d10f1465fcde3cbbcd770b89405c1cea3
IEDL.DBID BENPR
ISSN 1526-1492
IngestDate Sun Jun 29 15:31:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p183t-5b9b157dc9d5203a38a3f764648227d3d10f1465fcde3cbbcd770b89405c1cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2397275411?pq-origsite=%requestingapplication%
PQID 2397275411
PQPubID 2048798
ParticipantIDs proquest_journals_2397275411
PublicationCentury 2000
PublicationDate 20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160101
  day: 01
PublicationDecade 2010
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2016
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036389
Score 2.1304605
Snippet This paper presents a closed form solution to Liouville's equation governing the evolution of the probability density function associated with the motion of a...
SourceID proquest
SourceType Aggregation Database
StartPage 269
SubjectTerms Evolution
Liouville equations
Mapping
Method of characteristics
Monte Carlo simulation
Partial differential equations
Perturbation methods
Perturbation theory
Probability density functions
Propagation
Two body problem
Uncertainty analysis
Title Solution of Liouville's Equation for Uncertainty Characterization of the Main Problem in Satellite Theory
URI https://www.proquest.com/docview/2397275411
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrz4Fh9VchA8xe4mm01yEpWWIrYUtdBbyWuhB7ut3Qr-eyf70IPgLZBsDpnNN9_MZGYQutZOA3EQKRHcGwIMnBLFVUKYsy6NqNasNBSHo3QwSZ6mfFo73Nb1s8oGE0ugdrkNPvIuBcVJBU_i-G65IqFrVIiu1i00tlEbIFiC8dV-6I3GLw0Ws6CPy4qpNCVgC9AqrglbRV377kO57jgNqHFLU_UHjUsV099HuzU3xPeVMA_Qll8cor2m7wKur-ERmje-LJxn-Hmebz5DQt_NGvdWVeFuDEwUT2BtGe4vvvDjT1nmKusyfAjMDw9hGo-rnjIYhq-6LNBZeFzl7B-jSb_39jggdcsEsoS7WRBulIm5cFY5TiOmmdQsE2mSJkAEhGMujjLARp5Z55k1xjohIiMV0DYbW6_ZCWot8oU_RdjKhBqljZTMJJLBQMSGKa2k5tRweYY6zXHN6v9-PfuV0vn_0xdoJ5x95czooFbxsfGXoN4Lc1XL8BurR6Xm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcGgvLS1F0AbqAxUnl117vV4fqopHUEIeQoVI3IJfK3EgIc2mVf5UfyPjfcABiRs3S95drTzjb74Ze2YA9rXTSBxkSqXwhiIDZ1QJlVDurEsjpjUvHcXhKO2Ok_Nrcb0G_5tcmHCtssHEEqjdzIYY-SFDw8mkSOL41_2chq5R4XS1aaFRqUXfr_6hy7b42TtF-X5n7KxzddKldVcBeo_qW1BhlImFdFY5wSKueaZ5LtMkTdBWSsddHOUIHyK3znNrjHVSRiZTyGxsbL3m-N03sJ5wdGVasH7cGV38brCfB_tfVmhlKUXfg1XnqPjr0aG986E8eJwGlPrBUvUM_UuTdrYB72suSo4q5fkIa376CT40fR5Ive034baJnZFZTga3s-XfkEB4sCCdeVUonCDzJWN8trxeUKzIyWMZ6CrLM7yITJMMcZpcVD1sCA4vdVkQtPCkqhHwGcavsphb0JrOpn4biM0SZpQ2WcZNknEcyNhwpVWmBTMi24F2s1yTep8tJk9a8eXl6W_wtns1HEwGvVH_K7wLcqgCKW1oFX-WfhepRWH2ankSuHltFXoAI73i8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+Liouville%27s+Equation+for+Uncertainty+Characterization+of+the+Main+Problem+in+Satellite+Theory&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Weisman%2C+Ryan&rft.au=Majji%2C+Manoranjan&rft.au=Alfriend%2C+Kyle+T&rft.date=2016-01-01&rft.pub=Tech+Science+Press&rft.issn=1526-1492&rft.eissn=1526-1506&rft.volume=111&rft.issue=3&rft.spage=269&rft_id=info:doi/10.3970%2Fcmes.2016.111.269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1492&client=summon