Electroreduction of N2 to NH3 catalyzed by a Mn/Re(111) single-atom alloy catalyst with high activity and selectivity: a new insight from a first-principles study

First-principles calculations were employed to evaluate the doping effects on the activity and selectivity of various single-atom alloy (SAA) catalysts for the electrocatalytic nitrogen reduction reaction (eNRR). A series of SAA catalysts are formed by the introduction of different single transition...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 12; no. 12; pp. 4074 - 4085
Main Authors Cao, Ning, Zhang, Nan, Yong-Qing Qiu, Chun-Guang Liu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 20.06.2022
Subjects
Online AccessGet full text
ISSN2044-4753
2044-4761
DOI10.1039/d2cy00435f

Cover

Loading…
Abstract First-principles calculations were employed to evaluate the doping effects on the activity and selectivity of various single-atom alloy (SAA) catalysts for the electrocatalytic nitrogen reduction reaction (eNRR). A series of SAA catalysts are formed by the introduction of different single transition metal (TM = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Os, Ir, Pt, and Au) atoms into a defective Re(111) surface. Our periodic density functional theory (DFT) calculations show that the Mn/Re(111) SAA has the ability to spontaneously adsorb N2 molecules rather than H atoms, and thus it can effectively improve the selectivity of the eNRR and inhibit that of the HER. Electronic structure analysis shows that hydrogenation of *N2 to *NNH on the surface of the Mn/Re(111) SAA catalyst results in the formation of a *N2−· radical via the charge transfer from the H atom to the adsorbed N2 molecule. Due to the very high reactivity of the *N2−· radical, the calculated free energy changes of the subsequent hydrogenation processes along the favorable distal pathway are close to 0 eV or even negative on the surface of the Mn/Re(111) SAA. All these results indicate that the Mn/Re(111) SAA may be an excellent catalyst with high activity and selectivity for the eNRR.
AbstractList First-principles calculations were employed to evaluate the doping effects on the activity and selectivity of various single-atom alloy (SAA) catalysts for the electrocatalytic nitrogen reduction reaction (eNRR). A series of SAA catalysts are formed by the introduction of different single transition metal (TM = Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Os, Ir, Pt, and Au) atoms into a defective Re(111) surface. Our periodic density functional theory (DFT) calculations show that the Mn/Re(111) SAA has the ability to spontaneously adsorb N2 molecules rather than H atoms, and thus it can effectively improve the selectivity of the eNRR and inhibit that of the HER. Electronic structure analysis shows that hydrogenation of *N2 to *NNH on the surface of the Mn/Re(111) SAA catalyst results in the formation of a *N2−· radical via the charge transfer from the H atom to the adsorbed N2 molecule. Due to the very high reactivity of the *N2−· radical, the calculated free energy changes of the subsequent hydrogenation processes along the favorable distal pathway are close to 0 eV or even negative on the surface of the Mn/Re(111) SAA. All these results indicate that the Mn/Re(111) SAA may be an excellent catalyst with high activity and selectivity for the eNRR.
Author Chun-Guang Liu
Cao, Ning
Zhang, Nan
Yong-Qing Qiu
Author_xml – sequence: 1
  givenname: Ning
  surname: Cao
  fullname: Cao, Ning
– sequence: 2
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
– sequence: 3
  fullname: Yong-Qing Qiu
– sequence: 4
  fullname: Chun-Guang Liu
BookMark eNo9jc1OwzAQhC1UJErphSdYiQscQv0XO-GGqkKRoEgIzlUS262rYJfYoQqPw5OSQsVeZkea-eYUDZx3GqFzgq8JZvlE0arDmLPUHKEhxZwnXAoy-P9TdoLGIWxwfzwnOKND9D2rdRUb32jVVtF6B97AgkL0sJgzqIpY1N2XVlB2UMCTm7zoS0LIFQTrVrVOiujfoahr3x2yIcLOxjWs7WoNRY_8tLGvOgVB76d-_U3PcnoH1oU-FsE0ewoY24SYbBvrKrutdYAQW9WdoWNT1EGPDzpCb3ez1-k8eXy-f5jePiZbkrGYcMK44QJjKaThqpSplpWuClFKUWqFTWpyJQTHqcwoTXOt8kpSLhVWVOQ5ZyN08cfdNv6j1SEuN75tXD-5pEJmPZpnjP0AaDRvNQ
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID 7SR
8BQ
8FD
JG9
DOI 10.1039/d2cy00435f
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 4085
GroupedDBID 0-7
0R~
705
7SR
8BQ
8FD
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACAYK
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
JG9
O-G
O9-
OK1
R7G
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
ID FETCH-LOGICAL-p183t-4134f4600767f4db75e7ceca6b76bed0f5f9d66405782259ed9c7247d0d269943
ISSN 2044-4753
IngestDate Sun Jun 29 16:52:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-4134f4600767f4db75e7ceca6b76bed0f5f9d66405782259ed9c7247d0d269943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2678460483
PQPubID 2047527
PageCount 12
ParticipantIDs proquest_journals_2678460483
PublicationCentury 2000
PublicationDate 2022-06-20
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-20
  day: 20
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
SSID ssj0000491082
Score 2.3804796
Snippet First-principles calculations were employed to evaluate the doping effects on the activity and selectivity of various single-atom alloy (SAA) catalysts for the...
SourceID proquest
SourceType Aggregation Database
StartPage 4074
SubjectTerms Ammonia
Charge transfer
Chemical reduction
Chromium
Copper
Density functional theory
Electronic structure
First principles
Free energy
Gold
Hydrogenation
Iridium
Iron
Manganese
Mathematical analysis
Molybdenum
Palladium
Radicals
Rhenium
Selectivity
Silver
Single atom catalysts
Structural analysis
Transition metals
Title Electroreduction of N2 to NH3 catalyzed by a Mn/Re(111) single-atom alloy catalyst with high activity and selectivity: a new insight from a first-principles study
URI https://www.proquest.com/docview/2678460483
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXoT3ABfEUj4LmwAEUbeus17tZblWVKqDEqFUihVPkxxpVArtqnEP6cfhGfCNm1k-1FQIuVrJR7Mjzy-5_xjszjL3zfT8NdBZxk2SGo_9l-DiWisfBWCVSWxXFlI08D9V0KT-vgtVg8Ku3a2lbxofJ9Z15Jf9jVRxDu1KW7D9Ytj0pDuBrtC8e0cJ4_CsbT6oeNldUfrVRfqEgORlO_aGLzOyuK4kZDec0IZ9bKsxE05cZUpTgu-Xodf8Y0uP3Xf2NTVlFZ6mSsau14dpLuAC7a5rj3ldJ0qjJaTc7OfhVoko0zC5QT_LLJoa_6RWwbQsilHUhlCaniPArb8X4T6KiYrVeXPvh7bCD-muRf-NnFPE4u9h2uxW2OUf8XQrXth_aQK_YU1x4LYxVAKXZvep2p9Q98LpJUnhScqmrgsOHtj9WFXlvZ3nRp1n05mx0aWVv_aeSb3euLZ5PpVlTkezo8WmQdStos2sg_LI-Xc5m68VktbjH9gV6LrhW7B9PFp9mbeAPXbKR55qYtb-9KZvrm6Pu9LfEgVM8i0fsYe2qwHHF3WM2sPkTdr-9O0_Zz5v8QZFBKKAsAPmDlj-IdxDBPD86t--RvQ_QIw8cedCQB0QeEHnQkAdIHvTI-4jnQu6g5g6IOxy6yR047p6x5elkcTLldc8PfomLS8lRU8lMUtMEpTOZxjqwOrFJpGKtYpt6WZCZVClyM1DaBsamJtFC6tRLBU400n_O9vIity8YWF-j-ozSSEUo-mNrMo3HxJjxKPFTNXrJDpobvK7_1Ju1QPGGl5dj_9WfP37NHnTIHrC98mpr36A-LeO3tcV_A2R1l34
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroreduction+of+N2+to+NH3+catalyzed+by+a+Mn%2FRe%28111%29+single-atom+alloy+catalyst+with+high+activity+and+selectivity%3A+a+new+insight+from+a+first-principles+study&rft.jtitle=Catalysis+science+%26+technology&rft.au=Cao%2C+Ning&rft.au=Zhang%2C+Nan&rft.au=Yong-Qing+Qiu&rft.au=Chun-Guang+Liu&rft.date=2022-06-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=12&rft.issue=12&rft.spage=4074&rft.epage=4085&rft_id=info:doi/10.1039%2Fd2cy00435f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon