Separable programming problems with the max-product fuzzy relation equation constraints

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of...

Full description

Saved in:
Bibliographic Details
Published inIranian journal of fuzzy systems (Online) Vol. 16; no. 1; p. 1
Main Authors Hedayatfar, Behnaz, Abbasi Molai, Ali, Aliannezhadi, Samaneh
Format Journal Article
LanguageEnglish
Published Zahedan University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems 2019
Subjects
Online AccessGet full text
ISSN1735-0654
2676-4334
DOI10.22111/ijfs.2019.4480

Cover

Loading…
Abstract In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The detection of the optimal solution of the second subproblem by finding all the minimal solutions will be very time-consuming because of its NP-hardness. To overcome such difficulty, two types of sufficient conditions are proposed to find some of its optimal components or all of them. Under the first type sufficient conditions, some procedures are given to simplify the original problem. Also, a value matrix is defined and an algorithm is proposed to compute an initial upper bound on its optimal objective value using the matrix. Then, a branch-and-bound method is extended using the matrix and initial upper bound to solve the simplified problem without finding all the minimal solutions.
AbstractList In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The detection of the optimal solution of the second subproblem by finding all the minimal solutions will be very time-consuming because of its NP-hardness. To overcome such difficulty, two types of sufficient conditions are proposed to find some of its optimal components or all of them. Under the first type sufficient conditions, some procedures are given to simplify the original problem. Also, a value matrix is defined and an algorithm is proposed to compute an initial upper bound on its optimal objective value using the matrix. Then, a branch-and-bound method is extended using the matrix and initial upper bound to solve the simplified problem without finding all the minimal solutions.
Author Abbasi Molai, Ali
Hedayatfar, Behnaz
Aliannezhadi, Samaneh
Author_xml – sequence: 1
  givenname: Behnaz
  surname: Hedayatfar
  fullname: Hedayatfar, Behnaz
– sequence: 2
  givenname: Ali
  surname: Abbasi Molai
  fullname: Abbasi Molai, Ali
– sequence: 3
  givenname: Samaneh
  surname: Aliannezhadi
  fullname: Aliannezhadi, Samaneh
BookMark eNotkD1PwzAYhC1UJErpzGqJOcGvP5J4RBVQpEoMgBgrx37dpmqcNnYE9NcTVKY7PcPd6a7JJHQBCbkFlnMOAPfNzsecM9C5lBW7IFNelEUmhZATMoVSqIwVSl6ReYxNzUZQKVDFlHy-4cH0pt4jPfTdpjdt24TNnx9RG-lXk7Y0bZG25jsbqRtson44nX5oj3uTmi5QPA5nY7sQU2-akOINufRmH3H-rzPy8fT4vlhmq9fnl8XDKjtAJVLGva69dOhM7UpboWJCGw3eCmcE81I4hYBSlRyBIQeDWNtKl84q6x1qMSN359xx23HAmNa7bujDWLkeH4Cy4JpX4hc60lnx
ContentType Journal Article
Copyright 2019. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.22111/ijfs.2019.4480
DatabaseName ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2676-4334
GroupedDBID 5GY
ABDBF
ABUWG
ACUHS
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AZQEC
BENPR
CCPQU
DWQXO
EOJEC
ESX
OBODZ
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p183t-2f9bf4dedabd7c8e5039a91fc3da30f43d5e1e4572e10e21aeebc897dc5cfde93
IEDL.DBID BENPR
ISSN 1735-0654
IngestDate Sun Jun 29 16:00:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p183t-2f9bf4dedabd7c8e5039a91fc3da30f43d5e1e4572e10e21aeebc897dc5cfde93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2671762928?pq-origsite=%requestingapplication%
PQID 2671762928
PQPubID 5488532
ParticipantIDs proquest_journals_2671762928
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Zahedan
PublicationPlace_xml – name: Zahedan
PublicationTitle Iranian journal of fuzzy systems (Online)
PublicationYear 2019
Publisher University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems
Publisher_xml – name: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems
SSID ssib017385156
ssib007760721
ssib007153312
ssib044742111
ssj0002922826
Score 2.2202075
Snippet In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with...
SourceID proquest
SourceType Aggregation Database
StartPage 1
SubjectTerms Genetic algorithms
Integer programming
Linear programming
Methods
Optimization
Title Separable programming problems with the max-product fuzzy relation equation constraints
URI https://www.proquest.com/docview/2671762928
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfOKjlhy8xm6yu8nmJCotRWgRtdhb2c0DFPvcFrQHf7uTbvoAwfMGFpLJ981MZr5B6NpS4EQtGZFcBAQYSgMOmpAAV6hMcS65db3D7Q5vdaPHXtzzCbfcl1WuMHEJ1HqkXI68zjgEHpxJltyOJ8RNjXKvq36ERglVAIITsPPKfaPz9Ly2KOHcmS0CF4JvC4JRp-VCN2oyUQSRIvUW77Ac_gcxybJFSYQxcZ2YhT4Qc8vq7x_WSX5TeQNRTvAHzpcc1TxA-965xHeFNRyiHTM8QnvttTJrfozeXoxT-84-DfalWQMgL-znyuTY5WUxrMeD9IuMCzlYbOeLxTee-ro5bCaFPjhWzrl0MyZm-QnqNhuvDy3ihyuQMdziGWFWuho9o9NMC5WYOAhlKqlVoU7DwEahjg01USyYoYFhNDUmU4kUWsXKaiPDU1QejobmDGGhsySwiU5SlkUsjSECTDRcbJ6B85QG4Tmqrval729I3t-c58X_ny_RrtvhIu1RReXZdG6uwBGYZTV_2jVUav80fgG5Tq-s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxELWicCgcKmhB0AL1gR4Na--uvT4gVL4UCImqAoJb2LXHUqsSAhtEyY_iNzKT3QQkpN44ry87fp43Y8-8YWwjSOREb5Ww2kQCGcqjH4RYIFe4wmltdaDe4U5Xt86T48v0ssGeJr0wVFY58YljR-1vHN2RbymNiYdWVmU7g1tBU6PodXUyQqOCRRseHzBlK7eP9nF_vyt1eHC21xL1VAExQPgOhQqWitPA54U3LoM0im1uZXCxz-MoJLFPQUKSGgUyAiVzgMJl1niXuuCBxJfQ5c8k1NHaZDO7B92fv6YINhQ-vQoYjNGvBcgkacfIF_WaJMHMVNYnjLgD_w9zoHFLlIlTQZ2flR6RomVbv_8EkhiXdhOzqugNfYw58XCefayDWf6jQt8Ca0D_E5vrTJVgy8_s4hRIXbz4C7wuBbtGsuT1HJuS0z0wx_X8Ov8nBpX8LA_3o9Ejv6vr9DjcVnrk3FEwSzMthuUiO38Xsy-xZv-mD8uMG19kUch8lqsiUXmKGWfm0ZHoAoO1PIpX2OrELr36RJa9F_x8-f_nb-xD66xz0js56ra_slmydnXlssqaw7t7WMMgZFis1zvP2dV7g-0Zf3Lurg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separable+programming+problems+with+the+max-product+fuzzy+relation+equation+constraints&rft.jtitle=Iranian+journal+of+fuzzy+systems+%28Online%29&rft.au=Hedayatfar%2C+Behnaz&rft.au=Abbasi+Molai%2C+Ali&rft.au=Aliannezhadi%2C+Samaneh&rft.date=2019&rft.pub=University+of+Sistan+and+Baluchestan%2C+Iranian+Journal+of+Fuzzy+Systems&rft.issn=1735-0654&rft.eissn=2676-4334&rft.volume=16&rft.issue=1&rft.spage=1&rft_id=info:doi/10.22111%2Fijfs.2019.4480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-0654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-0654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-0654&client=summon