A Vital Signs Telemonitoring Programme Improves the Dynamic Prediction of Readmission Risk in Patients with Heart Failure

Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient p...

Full description

Saved in:
Bibliographic Details
Published inAMIA ... Annual Symposium proceedings Vol. 2020; pp. 432 - 441
Main Authors Fahimi, Fatemeh, Guo, Yang, Tong, Shao Chuen, Ng, Angela, Bing, Sharon Ong Yu, Choo, Bryan, Weiliang, Huang, Lee, Sheldon, Ramasamy, Savitha, Chow, Wai Leng, Choon, Oh Hong, Krishnaswamy, Pavitra
Format Journal Article
LanguageEnglish
Published United States American Medical Informatics Association 2020
Online AccessGet full text

Cover

Loading…
Abstract Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient profile information for predicting evolving 30-day HF-related readmission risk. We acquired data within a non-randomized controlled study that enrolled 150 HF patients over a 1-year post-discharge telemonitoring and telesupport programme. Using the sequential data and associated ground truth readmission outcomes, we developed a recurrent neural network model for dynamic risk prediction. The model detects emerging readmissions with sensitivity > 71%, specificity > 75%, AUROC ~80%. We characterize model performance in relation to telesupport based nurse assessments, and demonstrate strong sensitivity improvements. Our approach enables early stratification of high-risk patients and could enable adaptive targeting of care resources for managing patients with the most urgent needs at any given time.
AbstractList Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient profile information for predicting evolving 30-day HF-related readmission risk. We acquired data within a non-randomized controlled study that enrolled 150 HF patients over a 1-year post-discharge telemonitoring and telesupport programme. Using the sequential data and associated ground truth readmission outcomes, we developed a recurrent neural network model for dynamic risk prediction. The model detects emerging readmissions with sensitivity > 71%, specificity > 75%, AUROC ~80%. We characterize model performance in relation to telesupport based nurse assessments, and demonstrate strong sensitivity improvements. Our approach enables early stratification of high-risk patients and could enable adaptive targeting of care resources for managing patients with the most urgent needs at any given time.
Author Ng, Angela
Ramasamy, Savitha
Chow, Wai Leng
Tong, Shao Chuen
Bing, Sharon Ong Yu
Choo, Bryan
Weiliang, Huang
Fahimi, Fatemeh
Guo, Yang
Krishnaswamy, Pavitra
Choon, Oh Hong
Lee, Sheldon
AuthorAffiliation 2 Changi General Hospital, Singapore
1 Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
AuthorAffiliation_xml – name: 1 Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
– name: 2 Changi General Hospital, Singapore
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Fahimi
  fullname: Fahimi, Fatemeh
  organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
– sequence: 2
  givenname: Yang
  surname: Guo
  fullname: Guo, Yang
  organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
– sequence: 3
  givenname: Shao Chuen
  surname: Tong
  fullname: Tong, Shao Chuen
  organization: Changi General Hospital, Singapore
– sequence: 4
  givenname: Angela
  surname: Ng
  fullname: Ng, Angela
  organization: Changi General Hospital, Singapore
– sequence: 5
  givenname: Sharon Ong Yu
  surname: Bing
  fullname: Bing, Sharon Ong Yu
  organization: Changi General Hospital, Singapore
– sequence: 6
  givenname: Bryan
  surname: Choo
  fullname: Choo, Bryan
  organization: Changi General Hospital, Singapore
– sequence: 7
  givenname: Huang
  surname: Weiliang
  fullname: Weiliang, Huang
  organization: Changi General Hospital, Singapore
– sequence: 8
  givenname: Sheldon
  surname: Lee
  fullname: Lee, Sheldon
  organization: Changi General Hospital, Singapore
– sequence: 9
  givenname: Savitha
  surname: Ramasamy
  fullname: Ramasamy, Savitha
  organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
– sequence: 10
  givenname: Wai Leng
  surname: Chow
  fullname: Chow, Wai Leng
  organization: Changi General Hospital, Singapore
– sequence: 11
  givenname: Oh Hong
  surname: Choon
  fullname: Choon, Oh Hong
  organization: Changi General Hospital, Singapore
– sequence: 12
  givenname: Pavitra
  surname: Krishnaswamy
  fullname: Krishnaswamy, Pavitra
  organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33936416$$D View this record in MEDLINE/PubMed
BookMark eNpVkFtLw0AQhYMo9qJ_QfbRl0D2lsuLUKq1hYKlVl_DJjtJV5PduLup9N8b8YLOyzCc4TtnZhKcaqPhJBhjzrOQRUk8CibOvUQRS3ganwcjSjMaMxyPg-MMPSsvGvSoau3QDhpojVbeWKVrtLGmtqJtAa3azpoDOOT3gG6PWrSqHGSQqvTKaGQqtAUhW-Xc57hV7hUpjTbCK9DeoXfl92gJwnq0EKrpLVwEZ5VoHFx-92nwtLjbzZfh-uF-NZ-tww6n2IeSVDwjOAWeFJQyzOOhCEsiWZQloVUEuKgYgyqWGcSUUyJkUQErpSBpJgWdBjdf3K4vWpDlEMeKJu-saoU95kao_L-i1T6vzSFPo4QzEg-A62-ANW89OJ8PV5bQNEKD6V1OOME8YiQjw-rVX69fk59_0w8Nc4BC
ContentType Journal Article
Copyright 2020 AMIA - All rights reserved.
2020 AMIA - All rights reserved. 2020
Copyright_xml – notice: 2020 AMIA - All rights reserved.
– notice: 2020 AMIA - All rights reserved. 2020
DBID NPM
7X8
5PM
DatabaseName PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1559-4076
EndPage 441
ExternalDocumentID 33936416
Genre Journal Article
GroupedDBID 2WC
53G
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
E3Z
GX1
HYE
M~E
NPM
OK1
RPM
WOQ
7X8
5PM
ID FETCH-LOGICAL-p181t-d2f59218e57b3341566662470dbcc23f0e1bf44ef6d9e63532adbfe4cda289da3
IEDL.DBID RPM
IngestDate Tue Sep 17 21:26:32 EDT 2024
Sat Aug 17 02:06:11 EDT 2024
Sat Sep 28 08:27:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
License 2020 AMIA - All rights reserved.
This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p181t-d2f59218e57b3341566662470dbcc23f0e1bf44ef6d9e63532adbfe4cda289da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33936416
PQID 2521504292
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8075426
proquest_miscellaneous_2521504292
pubmed_primary_33936416
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle AMIA ... Annual Symposium proceedings
PublicationTitleAlternate AMIA Annu Symp Proc
PublicationYear 2020
Publisher American Medical Informatics Association
Publisher_xml – name: American Medical Informatics Association
SSID ssj0047586
Score 2.2522619
Snippet Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 432
Title A Vital Signs Telemonitoring Programme Improves the Dynamic Prediction of Readmission Risk in Patients with Heart Failure
URI https://www.ncbi.nlm.nih.gov/pubmed/33936416
https://search.proquest.com/docview/2521504292
https://pubmed.ncbi.nlm.nih.gov/PMC8075426
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4AB-PF-BZfGROvhbK7LfRIUCQmGKJguJF9aqMtxMLBf-9sS40YT96abLttZrb9vpn9OkPINTOB1b70vUCEGKAIprxItZTXQTQQVigT5p3nhg_hYMLvp8G0QoLyX5hctK9k3Ejfk0Yav-baykWimqVOrDka9lwBXZyrWSVVhN8yRC8-vxwJsOtLxFjEQt4K_2KOvwWQPxClv0t21lQQusUt90jFpPtka7je7D4gn114di094Cl-STMYI0Ak-RvoUnEwKoRViYEiL2AyQC4HN0WHeRx28zirw9yCk8qjQ11mDB7j7A3iFEZFRdUMXCoWBrjil9AXsZOpH5JJ_3bcG3jrTgneAhF66WlqgwjB2gRtyVgek4Uh5W1fS6Uos75pScu5saGODFIMRoWW1nClBQZcWrAjUkvnqTkhYGgkZWQ51ZFCrPLxUHaECrhGphQZWidXpT1n-OBue0GkZr7KZhSZQODwDc85Luw7WxQlM2alN-qkvWH57xNclevNEXR-Xu167ezTf195RrapC5LzvMk5qS0_VuYCmcRSXpLq3bR1ma-fL2M00fY
link.rule.ids 230,314,727,780,784,885,4024,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuNAEG2xSAOXEcwAk2GZQuJq4vTi0McoEIUlKIKAuFm9gsXEiXA48PdU2zECxImbpbbbVlXb71X1cxUhB8wJb2MdR0IlGKAoZiJpWiY6QjRQXhmXlJ3nBpdJ_4af3Ym7BSLqf2FK0b7R2WH-f3yYZw-ltnI6Ns1aJ9YcDrqhgC7O1Vwky4K1ZasO0qsPMEcKHDoTMSZZwlvJV9zxswTyHab01sjPORmETnXTdbLg8l_kx2C-3f2bvHTgNjT1gOvsPi9ghBAxLt_BkIyDYSWtGjuoMgOuAGRzcFz1mMfhME-wO0w8BLE8ujTkxuAqKx4hy2FY1VQtICRjoY9rfgY9lQWh-ga56Z2Muv1o3ishmiJGzyJLvZAI1060NWNlVJYklLdjq42hzMeupT3nzidWOiQZjCqrvePGKgy5rGKbZCmf5O4PAUel1tJzaqVBtIrxUB8pI7hFriQdbZD92p4pPnjYYFC5mzwXKUUuIALC4TlblX3TaVU0I6290SDtD5Z_OyHUuf44gu4v613P3f3321f-Iyv90eAivTi9PN8mqzSEzGUWZYcszZ6e3S7yipneK1fRK53_1Fo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58QPEivq3PEbymTXc3qTmKGuqjErSV3sI-NWjTYurBf-9s0koVT94Cu9mE2Um-b2Y_Zgg5ZSaw2pe-F4gQAxTBlBeplvLOEA2EFcqEZee57n3Y6fObQTCYa_VVivaVzBr527CRZy-ltnI8VM2ZTqyZdC9cAV1cqznWtrlIlgOGTjYL1KufMEca7LoTMRaxkLfCv_jjbxnkHK7Ea2R1SgjhvHrwOlkw-QapdadH3pvk8xyeXGMPeMye8wJ6CBPD8jt0CTlIKnnV0ECVHTAFIKODy6rPPA67dZztYWTBCeZxW11-DB6y4hWyHJKqrmoBLiELHfT7CcQic2L1LdKPr3oXHW_aL8EbI05PPE1tECFkm6AtGSsjszCkvO1rqRRl1jctaTk3NtSRQaLBqNDSGq60wLBLC7ZNlvJRbnYJGBpJGVlOdaQQsXy8lGdCBVwjX4oMrZOTmT1TfHF3yCByM_ooUop8IHAoh3N2Kvum46pwRjrbjTpp_7D89wRX6_rnCLpAWfN6uuV7_77zmNSSyzi9u76_3Scr1EXNZSLlgCxN3j_MIVKLiTwqnegLmf7VbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vital+Signs+Telemonitoring+Programme+Improves+the+Dynamic+Prediction+of+Readmission+Risk+in+Patients+with+Heart+Failure&rft.jtitle=AMIA+...+Annual+Symposium+proceedings&rft.au=Fahimi%2C+Fatemeh&rft.au=Guo%2C+Yang&rft.au=Tong%2C+Shao+Chuen&rft.au=Ng%2C+Angela&rft.date=2020&rft.eissn=1559-4076&rft.volume=2020&rft.spage=432&rft.epage=441&rft.externalDBID=NO_FULL_TEXT