A Vital Signs Telemonitoring Programme Improves the Dynamic Prediction of Readmission Risk in Patients with Heart Failure
Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient p...
Saved in:
Published in | AMIA ... Annual Symposium proceedings Vol. 2020; pp. 432 - 441 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Medical Informatics Association
2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient profile information for predicting evolving 30-day HF-related readmission risk. We acquired data within a non-randomized controlled study that enrolled 150 HF patients over a 1-year post-discharge telemonitoring and telesupport programme. Using the sequential data and associated ground truth readmission outcomes, we developed a recurrent neural network model for dynamic risk prediction. The model detects emerging readmissions with sensitivity > 71%, specificity > 75%, AUROC ~80%. We characterize model performance in relation to telesupport based nurse assessments, and demonstrate strong sensitivity improvements. Our approach enables early stratification of high-risk patients and could enable adaptive targeting of care resources for managing patients with the most urgent needs at any given time. |
---|---|
AbstractList | Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the community setting. We investigate the possibility of leveraging streaming telemonitored vital signs data alongside readily accessible patient profile information for predicting evolving 30-day HF-related readmission risk. We acquired data within a non-randomized controlled study that enrolled 150 HF patients over a 1-year post-discharge telemonitoring and telesupport programme. Using the sequential data and associated ground truth readmission outcomes, we developed a recurrent neural network model for dynamic risk prediction. The model detects emerging readmissions with sensitivity > 71%, specificity > 75%, AUROC ~80%. We characterize model performance in relation to telesupport based nurse assessments, and demonstrate strong sensitivity improvements. Our approach enables early stratification of high-risk patients and could enable adaptive targeting of care resources for managing patients with the most urgent needs at any given time. |
Author | Ng, Angela Ramasamy, Savitha Chow, Wai Leng Tong, Shao Chuen Bing, Sharon Ong Yu Choo, Bryan Weiliang, Huang Fahimi, Fatemeh Guo, Yang Krishnaswamy, Pavitra Choon, Oh Hong Lee, Sheldon |
AuthorAffiliation | 2 Changi General Hospital, Singapore 1 Institute for Infocomm Research, Agency for Science Technology & Research, Singapore |
AuthorAffiliation_xml | – name: 1 Institute for Infocomm Research, Agency for Science Technology & Research, Singapore – name: 2 Changi General Hospital, Singapore |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Fahimi fullname: Fahimi, Fatemeh organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore – sequence: 2 givenname: Yang surname: Guo fullname: Guo, Yang organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore – sequence: 3 givenname: Shao Chuen surname: Tong fullname: Tong, Shao Chuen organization: Changi General Hospital, Singapore – sequence: 4 givenname: Angela surname: Ng fullname: Ng, Angela organization: Changi General Hospital, Singapore – sequence: 5 givenname: Sharon Ong Yu surname: Bing fullname: Bing, Sharon Ong Yu organization: Changi General Hospital, Singapore – sequence: 6 givenname: Bryan surname: Choo fullname: Choo, Bryan organization: Changi General Hospital, Singapore – sequence: 7 givenname: Huang surname: Weiliang fullname: Weiliang, Huang organization: Changi General Hospital, Singapore – sequence: 8 givenname: Sheldon surname: Lee fullname: Lee, Sheldon organization: Changi General Hospital, Singapore – sequence: 9 givenname: Savitha surname: Ramasamy fullname: Ramasamy, Savitha organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore – sequence: 10 givenname: Wai Leng surname: Chow fullname: Chow, Wai Leng organization: Changi General Hospital, Singapore – sequence: 11 givenname: Oh Hong surname: Choon fullname: Choon, Oh Hong organization: Changi General Hospital, Singapore – sequence: 12 givenname: Pavitra surname: Krishnaswamy fullname: Krishnaswamy, Pavitra organization: Institute for Infocomm Research, Agency for Science Technology & Research, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33936416$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkFtLw0AQhYMo9qJ_QfbRl0D2lsuLUKq1hYKlVl_DJjtJV5PduLup9N8b8YLOyzCc4TtnZhKcaqPhJBhjzrOQRUk8CibOvUQRS3ganwcjSjMaMxyPg-MMPSsvGvSoau3QDhpojVbeWKVrtLGmtqJtAa3azpoDOOT3gG6PWrSqHGSQqvTKaGQqtAUhW-Xc57hV7hUpjTbCK9DeoXfl92gJwnq0EKrpLVwEZ5VoHFx-92nwtLjbzZfh-uF-NZ-tww6n2IeSVDwjOAWeFJQyzOOhCEsiWZQloVUEuKgYgyqWGcSUUyJkUQErpSBpJgWdBjdf3K4vWpDlEMeKJu-saoU95kao_L-i1T6vzSFPo4QzEg-A62-ANW89OJ8PV5bQNEKD6V1OOME8YiQjw-rVX69fk59_0w8Nc4BC |
ContentType | Journal Article |
Copyright | 2020 AMIA - All rights reserved. 2020 AMIA - All rights reserved. 2020 |
Copyright_xml | – notice: 2020 AMIA - All rights reserved. – notice: 2020 AMIA - All rights reserved. 2020 |
DBID | NPM 7X8 5PM |
DatabaseName | PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1559-4076 |
EndPage | 441 |
ExternalDocumentID | 33936416 |
Genre | Journal Article |
GroupedDBID | 2WC 53G ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK E3Z GX1 HYE M~E NPM OK1 RPM WOQ 7X8 5PM |
ID | FETCH-LOGICAL-p181t-d2f59218e57b3341566662470dbcc23f0e1bf44ef6d9e63532adbfe4cda289da3 |
IEDL.DBID | RPM |
IngestDate | Tue Sep 17 21:26:32 EDT 2024 Sat Aug 17 02:06:11 EDT 2024 Sat Sep 28 08:27:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | 2020 AMIA - All rights reserved. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p181t-d2f59218e57b3341566662470dbcc23f0e1bf44ef6d9e63532adbfe4cda289da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33936416 |
PQID | 2521504292 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8075426 proquest_miscellaneous_2521504292 pubmed_primary_33936416 |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | AMIA ... Annual Symposium proceedings |
PublicationTitleAlternate | AMIA Annu Symp Proc |
PublicationYear | 2020 |
Publisher | American Medical Informatics Association |
Publisher_xml | – name: American Medical Informatics Association |
SSID | ssj0047586 |
Score | 2.2522619 |
Snippet | Heart failure (HF) is a leading cause of hospital readmissions. There is great interest in approaches to efficiently predict emerging HF-readmissions in the... |
SourceID | pubmedcentral proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 432 |
Title | A Vital Signs Telemonitoring Programme Improves the Dynamic Prediction of Readmission Risk in Patients with Heart Failure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33936416 https://search.proquest.com/docview/2521504292 https://pubmed.ncbi.nlm.nih.gov/PMC8075426 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4AB-PF-BZfGROvhbK7LfRIUCQmGKJguJF9aqMtxMLBf-9sS40YT96abLttZrb9vpn9OkPINTOB1b70vUCEGKAIprxItZTXQTQQVigT5p3nhg_hYMLvp8G0QoLyX5hctK9k3Ejfk0Yav-baykWimqVOrDka9lwBXZyrWSVVhN8yRC8-vxwJsOtLxFjEQt4K_2KOvwWQPxClv0t21lQQusUt90jFpPtka7je7D4gn114di094Cl-STMYI0Ak-RvoUnEwKoRViYEiL2AyQC4HN0WHeRx28zirw9yCk8qjQ11mDB7j7A3iFEZFRdUMXCoWBrjil9AXsZOpH5JJ_3bcG3jrTgneAhF66WlqgwjB2gRtyVgek4Uh5W1fS6Uos75pScu5saGODFIMRoWW1nClBQZcWrAjUkvnqTkhYGgkZWQ51ZFCrPLxUHaECrhGphQZWidXpT1n-OBue0GkZr7KZhSZQODwDc85Luw7WxQlM2alN-qkvWH57xNclevNEXR-Xu167ezTf195RrapC5LzvMk5qS0_VuYCmcRSXpLq3bR1ma-fL2M00fY |
link.rule.ids | 230,314,727,780,784,885,4024,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuNAEG2xSAOXEcwAk2GZQuJq4vTi0McoEIUlKIKAuFm9gsXEiXA48PdU2zECxImbpbbbVlXb71X1cxUhB8wJb2MdR0IlGKAoZiJpWiY6QjRQXhmXlJ3nBpdJ_4af3Ym7BSLqf2FK0b7R2WH-f3yYZw-ltnI6Ns1aJ9YcDrqhgC7O1Vwky4K1ZasO0qsPMEcKHDoTMSZZwlvJV9zxswTyHab01sjPORmETnXTdbLg8l_kx2C-3f2bvHTgNjT1gOvsPi9ghBAxLt_BkIyDYSWtGjuoMgOuAGRzcFz1mMfhME-wO0w8BLE8ujTkxuAqKx4hy2FY1VQtICRjoY9rfgY9lQWh-ga56Z2Muv1o3ishmiJGzyJLvZAI1060NWNlVJYklLdjq42hzMeupT3nzidWOiQZjCqrvePGKgy5rGKbZCmf5O4PAUel1tJzaqVBtIrxUB8pI7hFriQdbZD92p4pPnjYYFC5mzwXKUUuIALC4TlblX3TaVU0I6290SDtD5Z_OyHUuf44gu4v613P3f3321f-Iyv90eAivTi9PN8mqzSEzGUWZYcszZ6e3S7yipneK1fRK53_1Fo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58QPEivq3PEbymTXc3qTmKGuqjErSV3sI-NWjTYurBf-9s0koVT94Cu9mE2Um-b2Y_Zgg5ZSaw2pe-F4gQAxTBlBeplvLOEA2EFcqEZee57n3Y6fObQTCYa_VVivaVzBr527CRZy-ltnI8VM2ZTqyZdC9cAV1cqznWtrlIlgOGTjYL1KufMEca7LoTMRaxkLfCv_jjbxnkHK7Ea2R1SgjhvHrwOlkw-QapdadH3pvk8xyeXGMPeMye8wJ6CBPD8jt0CTlIKnnV0ECVHTAFIKODy6rPPA67dZztYWTBCeZxW11-DB6y4hWyHJKqrmoBLiELHfT7CcQic2L1LdKPr3oXHW_aL8EbI05PPE1tECFkm6AtGSsjszCkvO1rqRRl1jctaTk3NtSRQaLBqNDSGq60wLBLC7ZNlvJRbnYJGBpJGVlOdaQQsXy8lGdCBVwjX4oMrZOTmT1TfHF3yCByM_ooUop8IHAoh3N2Kvum46pwRjrbjTpp_7D89wRX6_rnCLpAWfN6uuV7_77zmNSSyzi9u76_3Scr1EXNZSLlgCxN3j_MIVKLiTwqnegLmf7VbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vital+Signs+Telemonitoring+Programme+Improves+the+Dynamic+Prediction+of+Readmission+Risk+in+Patients+with+Heart+Failure&rft.jtitle=AMIA+...+Annual+Symposium+proceedings&rft.au=Fahimi%2C+Fatemeh&rft.au=Guo%2C+Yang&rft.au=Tong%2C+Shao+Chuen&rft.au=Ng%2C+Angela&rft.date=2020&rft.eissn=1559-4076&rft.volume=2020&rft.spage=432&rft.epage=441&rft.externalDBID=NO_FULL_TEXT |