Medical Text Classification Using Convolutional Neural Networks

We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate t...

Full description

Saved in:
Bibliographic Details
Published inStudies in health technology and informatics Vol. 235; p. 246
Main Authors Hughes, Mark, Li, Irene, Kotoulas, Spyros, Suzumura, Toyotaro
Format Journal Article
LanguageEnglish
Published Netherlands 2017
Subjects
Online AccessGet more information
ISSN0926-9630
DOI10.3233/978-1-61499-753-5-246

Cover

Abstract We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
AbstractList We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Author Hughes, Mark
Li, Irene
Kotoulas, Spyros
Suzumura, Toyotaro
Author_xml – sequence: 1
  givenname: Mark
  surname: Hughes
  fullname: Hughes, Mark
  organization: IBM Research Lab, Ireland
– sequence: 2
  givenname: Irene
  surname: Li
  fullname: Li, Irene
  organization: IBM Research Lab, Ireland
– sequence: 3
  givenname: Spyros
  surname: Kotoulas
  fullname: Kotoulas, Spyros
  organization: IBM Research Lab, Ireland
– sequence: 4
  givenname: Toyotaro
  surname: Suzumura
  fullname: Suzumura, Toyotaro
  organization: Japan Science and Technology Agency, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28423791$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lOwzAURb0oogN8Aig_YHj2cz2sEIqgILWwadeVE9sokMZRnDD8PWHo4upIR1dXunMyaWLjCblgcIUc8dooTRmVTBhD1RLpknIhJ2QGhktqJMKUzFN6BRi1UadkyrXgqAybkZuNd1Vp62zrP_ssr21KVRhFX8Um26Wqecny2LzHevgxY-_JD90v-o_YvaUzchJsnfz5Pxdkd3-3zR_o-nn1mN-uacuU7mkoHAZwoBnYIIAxcMyqwlkJGkALcK5UYwJH45S26IWxhS0NShCoJF-Qy7_ddigO3u3brjrY7mt_fMK_ARZXTA0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.3233/978-1-61499-753-5-246
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 28423791
Genre Journal Article
GroupedDBID ---
36B
53G
AAWTL
ACGFO
ACGFS
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
DU5
ECM
EIF
EMB
EMOBN
F5P
MBS
MIO
NPM
P2P
SV3
ID FETCH-LOGICAL-p178t-fbd3f0d0810af40110d1a7bda60800840ddc7ddcf239d78a3e49abac936043762
ISSN 0926-9630
IngestDate Thu May 23 23:23:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords semantic clinical classification
Clinical text
convolutional neural network
sentence classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p178t-fbd3f0d0810af40110d1a7bda60800840ddc7ddcf239d78a3e49abac936043762
PMID 28423791
ParticipantIDs pubmed_primary_28423791
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Studies in health technology and informatics
PublicationTitleAlternate Stud Health Technol Inform
PublicationYear 2017
SSID ssj0024697
Score 2.526574
Snippet We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex...
SourceID pubmed
SourceType Index Database
StartPage 246
SubjectTerms Machine Learning
Natural Language Processing
Neural Networks (Computer)
Semantics
Title Medical Text Classification Using Convolutional Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/28423791
Volume 235
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5avXgRxfeLHLyV1WY3j-YkIpYq2osp9FY22axe2gRNhPbXO5PdtGmpogbyIBuWTebbyczsPAi5dJM4cQKOaUMlo45qu7QjY0mlSgTobq6tYoxGfu57vYHzOHSHjUZW81oq8ugqnq2NK_kPVeEe0BWjZP9A2XmncAOugb5wBArD8Vc0rlZZQuCwurwlOv5okg7Miv7k0wwBnsNMHOWpdP3-qAumxp8QzR86NLKVz43uJkOTEW8X3vG94vVNc5l6xM9T6R_wgKky59w8xcLrOnTsJZvCj3mxFjUrxkVZ66gVptM0F-9p3RBh-zVDhLEoMo_CfG7XmSvjbp09anPjKtvmDM3KXa3QgrwQBBS0KOrSlefh62fjkpbwU2Xc13W-fm5dyaZdNTVJ0_eRkffRulPlZtTFeOYvoiO-cHTXa8eGmaRNfytaSSmdhDtk26gV1q3GyC5pJJM9cmPwYSE-rGV8WCU-rCV8WBofVoWPfTLo3od3PWoKZtDM9js5VZHkqi1BymsL5aBkJ23hR1J4qBeAKi9l7MOuGA-k3xEcpqmIRBxwD1NceeyAbEzSSXJELDtRdpQ40M4d2NzIhe6ErZhiQSfiwTE51O87ynRWlFH1JU6-bTklWwvcnJFNBdMwOQeZLo8uSkJ8AfvjSfU
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Text+Classification+Using+Convolutional+Neural+Networks&rft.jtitle=Studies+in+health+technology+and+informatics&rft.au=Hughes%2C+Mark&rft.au=Li%2C+Irene&rft.au=Kotoulas%2C+Spyros&rft.au=Suzumura%2C+Toyotaro&rft.date=2017-01-01&rft.issn=0926-9630&rft.volume=235&rft.spage=246&rft_id=info:doi/10.3233%2F978-1-61499-753-5-246&rft_id=info%3Apmid%2F28423791&rft_id=info%3Apmid%2F28423791&rft.externalDocID=28423791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9630&client=summon