T2‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases

Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalen...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 39; no. 11; pp. 2428 - 2438
Main Authors Ketola, Juuso H. J., Inkinen, Satu I., Karppinen, Jaro, Niinimäki, Jaakko, Tervonen, Osmo, Nieminen, Miika T.
Format Journal Article
LanguageEnglish
Published 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T2‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T2‐weighted magnetic resonance images can be applied in low back pain classification.
AbstractList Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population-based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T2 -weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin-echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow-up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4-L5 and L5-S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area-under-curve of 0.91. To conclude, textural features from T2 -weighted magnetic resonance images can be applied in low back pain classification.Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population-based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T2 -weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin-echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow-up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4-L5 and L5-S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area-under-curve of 0.91. To conclude, textural features from T2 -weighted magnetic resonance images can be applied in low back pain classification.
Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic resonance imaging are associated with low back pain but none of them is specific for the presence of low back pain as abnormal findings are prevalent among asymptomatic subjects as well. The purpose of this population‐based study was to investigate if more specific magnetic resonance imaging predictors of low back pain could be found via texture analysis and machine learning. We used this methodology to classify T2‐weighted magnetic resonance images from the Northern Finland Birth Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine magnetic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T. Texture analysis pipeline consisting of textural feature extraction, principal component analysis, and logistic regression classifier was applied to the data to classify them into symptomatic (clinically relevant pain with frequency ≥30 days and intensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no previous pain episodes in the follow‐up period) groups. Best classification results were observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative predictive value of 94%, precision of 56%, and receiver operating characteristic area‐under‐curve of 0.91. To conclude, textural features from T2‐weighted magnetic resonance images can be applied in low back pain classification.
Author Tervonen, Osmo
Niinimäki, Jaakko
Inkinen, Satu I.
Karppinen, Jaro
Nieminen, Miika T.
Ketola, Juuso H. J.
Author_xml – sequence: 1
  givenname: Juuso H. J.
  orcidid: 0000-0002-7760-6241
  surname: Ketola
  fullname: Ketola, Juuso H. J.
  email: juuso.ketola@oulu.fi
  organization: University of Oulu
– sequence: 2
  givenname: Satu I.
  orcidid: 0000-0002-9774-8925
  surname: Inkinen
  fullname: Inkinen, Satu I.
  organization: University of Oulu
– sequence: 3
  givenname: Jaro
  orcidid: 0000-0002-2158-6042
  surname: Karppinen
  fullname: Karppinen, Jaro
  organization: Finnish Institute of Occupational Health
– sequence: 4
  givenname: Jaakko
  orcidid: 0000-0002-5591-3726
  surname: Niinimäki
  fullname: Niinimäki, Jaakko
  organization: Oulu University Hospital
– sequence: 5
  givenname: Osmo
  surname: Tervonen
  fullname: Tervonen, Osmo
  organization: Oulu University Hospital
– sequence: 6
  givenname: Miika T.
  orcidid: 0000-0002-2300-2848
  surname: Nieminen
  fullname: Nieminen, Miika T.
  organization: Oulu University Hospital
BookMark eNpNkU1OwzAQhS0EEqWw4AZesgn1X-rArqr4VSUk1AW7aOxMiiG1Q-yqdMcROAbn4iSkgASrGT19854074Ds-uCRkGPOTjljYvQUulOhzrTcIQOe5yrLhX7YJQOm5ThjYjzeJwcxPjHGNBfFgHzMxefb-xrd4jFhRZew8JicpR3G4MFbpK7XnF_QhK9p1SGFSNsOK2dT6GioaRPW1IB9pi04f04nf6CHZhNd7P0NxN7cNhCjq52F5IKnrWuxcR5pCjRulm0KS9hGg6_6kH-C7a_jIdmroYl49DuHZH55MZ9eZ7O7q5vpZJa1XBcyOyusAgbAlcZKMqihqHSVowUDOYCRJi-wVoZLYSpErZBZYw1oPhYF13JITn5s2y68rDCmcumixaYBj2EVS6G0VEznaouOftC1a3BTtl3_qW5TclZumyj7JsrvJsrbu_vvRX4Bad2HxQ
ContentType Journal Article
Copyright 2020 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Copyright_xml – notice: 2020 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
– notice: 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
DBID 24P
7X8
DOI 10.1002/jor.24973
DatabaseName Wiley Online Library Open Access
MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 2438
ExternalDocumentID JOR24973
Genre article
GrantInformation_xml – fundername: Teknologiateollisuuden 100‐Vuotisjuhlasäätiö
– fundername: Tauno Tönningin Säätiö
– fundername: Jane ja Aatos Erkon Säätiö
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3V.
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RWL
RWR
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYB
WYISQ
X7M
XG1
XV2
YCJ
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
7X8
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
ID FETCH-LOGICAL-p1783-98c4a0aa147ed30afa8d7d5ecaba5aab3b58ef4b132bdee74e0cbcba71628173
IEDL.DBID DR2
ISSN 0736-0266
1554-527X
IngestDate Fri Jul 11 01:11:15 EDT 2025
Wed Jan 22 16:27:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1783-98c4a0aa147ed30afa8d7d5ecaba5aab3b58ef4b132bdee74e0cbcba71628173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2300-2848
0000-0002-9774-8925
0000-0002-7760-6241
0000-0002-5591-3726
0000-0002-2158-6042
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24973
PQID 2473407547
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2473407547
wiley_primary_10_1002_jor_24973_JOR24973
PublicationCentury 2000
PublicationDate November 2021
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Journal of orthopaedic research
PublicationYear 2021
References 2017; 5
1994; 331
2017; 41
2012; 221
2004; 29
2005; 352
2000; 25
2019; 30
2019; 124
2008; 8
1988; 166
2016; 95
2001; 26
2012; 37
2009; 373
2011; 36
2012; 36
2016; 16
2019; 160
2016; 35
2018; 47
2009; 34
1988; 2
2018; 8
2018; 391
2010; 49
1979; 67
2010; 69
2019; 64
2015; 40
2003; 6
2000; 55
2004; 59
2018
2019; 29
2014; 35
2003; 28
2016; 61
2007; 5
2015
2020; 45
2014; 9
2012; 379
2012; 7
2018; 37
1994; 76
1990; 72
References_xml – volume: 29
  start-page: 2668
  issue: 23
  year: 2004
  end-page: 2676
  article-title: The occurrence of annular tears and their relation to lifetime back pain history: A cadaveric study using barium sulfate discography
  publication-title: Spine (Phila Pa 1976)
– volume: 72
  start-page: 403
  issue: 3
  year: 1990
  end-page: 408
  article-title: Abnormal lumbar magnetic‐resonance spine scans of the in asymptomatic subjects: a prospective investigation
  publication-title: J Bone Jt Surg
– volume: 36
  start-page: 43
  issue: 21
  year: 2011
  end-page: 53
  article-title: Degenerative magnetic resonance imaging changes in patients with chronic low back pain
  publication-title: Spine (Phila Pa 1976)
– volume: 26
  start-page: 1158
  issue: 10
  year: 2001
  end-page: 1166
  article-title: The longitudinal assessment of imaging and disability of the back (LAIDBack) study
  publication-title: Spine (Phila Pa 1976)
– volume: 95
  issue: 22
  year: 2016
  article-title: Refined phenotyping of Modic changes: imaging biomarkers of prolonged severe low back pain and disability
  publication-title: Medicine
– volume: 373
  start-page: 463
  issue: 9662
  year: 2009
  end-page: 472
  article-title: Imaging strategies for low‐back pain: systematic review and meta‐analysis
  publication-title: Lancet
– volume: 9
  start-page: 1
  issue: 3
  year: 2014
  end-page: 8
  article-title: Influence of low back pain and prognostic value of MRI in Sciatica patients in relation to back pain
  publication-title: PLoS One
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  end-page: 1159
  article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans Med Imaging
– volume: 49
  start-page: 117
  year: 2010
  end-page: 125
  article-title: Local binary patterns variants as texture descriptors for medical image analysis
  publication-title: Artif Intell Med
– volume: 37
  start-page: 1490
  issue: 17
  year: 2012
  end-page: 1496
  article-title: ISSLS prize winner: Lumbar vertebral endplate lesions: Associations with disc degeneration and back pain history
  publication-title: Spine (Phila Pa 1976)
– volume: 16
  start-page: 1079
  issue: 9
  year: 2016
  end-page: 1089
  article-title: Two subtypes of intervertebral disc degeneration distinguished by large‐scale population‐based study
  publication-title: Spine J
– volume: 30
  start-page: 1265
  issue: 6
  year: 2019
  end-page: 1274
  article-title: Texture analysis of vertebral bone marrow using chemical shift encoding – based water‐fat MRI: a feasibility study
  publication-title: Osteoporos Int
– volume: 34
  start-page: 934
  issue: 9
  year: 2009
  end-page: 940
  article-title: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty‐three individuals
  publication-title: Spine (Phila Pa 1976)
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning‐based approach
  publication-title: Sci Rep
– volume: 69
  start-page: 7
  issue: 1
  year: 2010
  end-page: 11
  article-title: Magnetic resonance imaging for low back pain: indications and limitations
  publication-title: Ann Rheum Dis
– volume: 36
  start-page: 47
  issue: 1
  year: 2012
  end-page: 54
  article-title: Magnetic resonance findings of acute severe lower back pain
  publication-title: Ann Rehabil Med
– volume: 7
  issue: 12
  year: 2012
  article-title: MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems
  publication-title: PLoS One
– start-page: 198
  year: 2018
  end-page: 211
– volume: 331
  start-page: 69
  issue: 2
  year: 1994
  end-page: 73
  article-title: Magnetic resonance imaging of the lumbar spine in people without pain
  publication-title: N Engl J Med
– volume: 35
  start-page: 2013
  issue: 10
  year: 2014
  end-page: 2020
  article-title: Distinguishing imaging features between spinal hyperplastic hematopoietic bone marrow and bone metastasis
  publication-title: Am J Neuroradiol.
– volume: 47
  start-page: 947
  issue: 7
  year: 2018
  end-page: 954
  article-title: Texture analysis of paraspinal musculature in MRI of the lumbar spine: analysis of the lumbar stenosis outcome study (LSOS) data
  publication-title: Skeletal Radiol
– volume: 37
  start-page: 1231
  issue: 14
  year: 2012
  end-page: 1239
  article-title: Association of Modic changes, Schmorl's nodes, spondylolytic defects, high‐intensity zone lesions, disc herniations, and radial tears with low back symptom severity among young Finnish adults
  publication-title: Spine (Phila Pa 1976)
– volume: 59
  start-page: 1061
  issue: 12
  year: 2004
  end-page: 1069
  article-title: Texture analysis of medical images
  publication-title: Clin Radiol
– volume: 16
  start-page: 32
  issue: 1
  year: 2016
  end-page: 41
  article-title: Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large‐scale population‐based cohort
  publication-title: Spine J
– volume: 36
  start-page: 2180
  issue: 25
  year: 2011
  end-page: 2189
  article-title: Does lumbar disc degeneration on magnetic resonance imaging associate with low back
  publication-title: Spine (Phila Pa 1976)
– volume: 25
  start-page: 1484
  issue: 12
  year: 2000
  end-page: 1492
  article-title: Natural history of individuals with asymptomatic disc abnormalities in magnetic resonance imaging: predictors of low back pain‐related medical consultation and work incapacity
  publication-title: Spine (Phila Pa 1976)
– volume: 221
  start-page: 497
  issue: 6
  year: 2012
  end-page: 506
  article-title: Intervertebral disc degeneration: evidence for two distinct phenotypes
  publication-title: J Anat
– volume: 64
  start-page: 4
  year: 2019
  end-page: 12
  article-title: Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE‐MRI
  publication-title: Magn Reson Imaging
– volume: 28
  start-page: 582
  issue: 6
  year: 2003
  end-page: 588
  article-title: Associations between back pain history and lumbar MRI findings
  publication-title: Spine (Phila Pa 1976)
– volume: 25
  start-page: 487
  issue: 4
  year: 2000
  end-page: 492
  article-title: Low back pain in relation to lumbar disc degeneration
  publication-title: Spine (Phila Pa 1976)
– start-page: 234
  year: 2015
  end-page: 241
– volume: 61
  start-page: R150
  issue: 13
  year: 2016
  end-page: R166
  article-title: Applications and limitations of radiomics
  publication-title: Phys Med Biol
– volume: 352
  start-page: 1891
  issue: 18
  year: 2005
  end-page: 1898
  article-title: Persistent Low Back Pain
  publication-title: N Engl J Med
– volume: 6
  start-page: 449
  issue: 4
  year: 2003
  end-page: 456
  article-title: Accuracy of precision diagnostic blocks in the diagnosis of chronic spinal pain of facet or zygapophysial joint origin: A systematic review
  publication-title: Pain Physician
– volume: 379
  start-page: 481
  issue: 9814
  year: 2012
  end-page: 491
  article-title: Non‐specific low back pain
  publication-title: Lancet
– volume: 124
  start-page: 50
  issue: 1
  year: 2019
  end-page: 57
  article-title: Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study
  publication-title: Radiol Medica.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Multi‐parameter ensemble learning for automated vertebral body segmentation in heterogeneously acquired clinical MR images
  publication-title: IEEE J Transl Eng Heal Med
– volume: 76
  start-page: 757
  issue: 5
  year: 1994
  end-page: 764
  article-title: Vertebral bone‐marrow changes in degenerative lumbar disc disease
  publication-title: J Bone Jt Surg
– volume: 55
  start-page: 145
  issue: 2
  year: 2000
  end-page: 149
  article-title: Correlation between the MRI changes in the lumbar multifidus muscles and leg pain
  publication-title: Clin Radiol
– volume: 67
  start-page: 786
  issue: 5
  year: 1979
  end-page: 804
  article-title: Statistical and structural approaches to texture
  publication-title: Proc IEEE
– start-page: 14
  year: 2015
  end-page: 26
– volume: 2
  start-page: 59
  issue: 1
  year: 1988
  end-page: 88
  article-title: The longitudinal study of the northern Finland birth cohort of 1966
  publication-title: Paediatr Perinat Epidemiol
– volume: 26
  start-page: 1873
  issue: 17
  year: 2001
  end-page: 1878
  article-title: Magnetic resonance classification of lumbar intervertebral disc degeneration
  publication-title: Spine (Phila Pa 1976)
– volume: 8
  start-page: 8
  issue: 1
  year: 2008
  end-page: 20
  article-title: A systematic review of low back pain cost of illness studies in the United States and internationally
  publication-title: Spine J
– volume: 391
  start-page: 2356
  year: 2018
  end-page: 2367
  article-title: What low back pain is and why we need to pay attention
  publication-title: Lancet
– volume: 29
  start-page: 22
  issue: 1
  year: 2019
  end-page: 30
  article-title: Correlation of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS)
  publication-title: Eur Radiol
– volume: 160
  start-page: 1361
  issue: 6
  year: 2019
  end-page: 1373
  article-title: Insight into the genetic architecture of back pain and its risk factors from a study of 590,000 individuals
  publication-title: Pain
– volume: 37
  start-page: 1289
  issue: 6
  year: 2018
  end-page: 1296
  article-title: Image reconstruction is a new frontier of machine learning
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 2
  issue: 1
  year: 2007
  article-title: Are MRI‐defined fat infiltrations in the multifidus muscles associated with low back pain?
  publication-title: BMC Med
– volume: 45
  start-page: 1360
  issue: 19
  year: 2020
  end-page: 1367
  article-title: Association between Modic changes and low back pain in middle age: a northern Finland birth cohort study
  publication-title: Spine (Phila Pa 1976)
– volume: 166
  start-page: 193
  issue: 1
  year: 1988
  end-page: 199
  article-title: Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging
  publication-title: Radiology
– volume: 41
  start-page: 63
  year: 2017
  end-page: 73
  article-title: SpineNet: automated classification and evidence visualization in spinal MRIs
  publication-title: Med Image Anal
– volume: 40
  start-page: 1187
  year: 2015
  end-page: 1193
  article-title: ISSLS Prize 2015. Vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain
  publication-title: Spine (Phila Pa 1976)
SSID ssj0007128
Score 2.4472702
Snippet Low back pain is a very common symptom and the leading cause of disability throughout the world. Several degenerative imaging findings seen on magnetic...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2428
SubjectTerms low back pain
lumbar spine
machine learning
magnetic resonance imaging
texture analysis
Title T2‐weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis‐based classification pipeline to symptomatic and asymptomatic cases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24973
https://www.proquest.com/docview/2473407547
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKT1x4CBDlUQ0SBy7Z5uGsYzhViKqqxEPVIvWAFI3jCVraTaJNVhWc-An8DH4Xv4QZZ7dbOCFukeVxLM3Y_sae-Uap57wpJmRMHXmXuUg7rSO0wUuxsXXW1iaU83n7bnr8UZ-c5Wc76tUmF2bkh7i6cJOVEfZrWeDo-oMtaeiXdjlh38EI06fEagkgOt1SR5kk1FVlC5Yg2-l0wyoUpwdXkn-gyuvYNBwuR7fVp820xpiS88lqcJPq21-Mjf857zvq1hp0wuFoJXfVDjX31M9Z-uv7j8twNUoeFvi5kYRGYP-7FRYOgvkilDACCQ5ZLQmwh24pDzvsp0Nbw0V7CQ6rc-hw3ryEw23HNdMJjy-npIdKMLoEJQU7gG7eSRo8wdBC_3XRDW0gjmU5zz-51lCxdH9fzY7ezF4fR-u6DVGXmCKLbFFpjBETbchnMdZYeONzqtBhjshGkRdUa8eOsPNERlNcucqhkFkVickeqN2mbeihAmvqzHlrksQ67cjYOEayU4OM1FIef0892yiw5GUhbx3YULvqy1SbjH3VXJs99SKoo-xG-o5yJGpOS1ZEGRRRnrw_DR-P_r3rY3UzleiWkJX4RO0OyxU9ZXgyuH11I9Uf9oM1_gbn_-nL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4ALUFFEgbaDxKGXbPPjrGPEpaqotqUtUrVIvaBoHE_QUjaJdrOq4MQj8Bh9rj5Jx85ut3BC3CLL41iasT2fPfONEG95U4xIqTKwJjGBNFIGqD1K0aE2WpfKl_M5PesPPsvji_RiRbxf5MJ0_BB3F25uZfj92i1wdyG9t2QN_VZPegweVPJArLmK3h5QnS_Jo1TkK6uyDbsw235_wSsUxnt3on_4lfe9U3-8HD4RXxYT66JKLnuz1vSKn39xNv7vzJ-Kx3O_E_Y7Q1kXK1Q9E9fD-ObX7yt_O0oWxvi1cjmNwBC8dkQcBKOxr2IELj5kNiHAKTQT97bDUB3qEr7XV2CwuIQGR9U72F92nJOd8PjuoLRQODfdxSV5U4Bm1LhMeIK2humPcdPWnjuW5Sz_5F5DwdLTDTE8_DA8GATz0g1BE6ksCXRWSAwRI6nIJiGWmFllUyrQYIrIdpFmVErDWNhYIiUpLExh0PFZZZFKnovVqq7ohQCtysRYraJIG2lI6TBE0n2F7KzFPP6meLPQYM4rwz13YEX1bJrHUiUMV1OpNsWu10fedAweecfVHOesiNwrIj_-dO4_Xv571x3xcDA8PclPjs4-vhKPYhfs4pMUX4vVdjKjLfZWWrPtjfIW4yTtDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkRAXWgSI0gKDxIFLtvlx4ricKsqqFCioWqQekKJxPKmWskm0m1UFJx6Bx-C5eJKOnd1u4YS4RZbHsTRj-xt75hshnvOmGJFSVWBNYgJppAxQey9Fh9poXSlfzuf9cXb4SR6dpqdr4uUyF6bnh7i6cHMrw-_XboG3ttpdkYZ-aaYD9h1UckPclFmYO5M-OFlxR6nIF1ZlE3ZRtlm2pBUK490r0T9g5XVw6k-X4Yb4vJxXH1RyPph3ZlB-_4uy8T8nvinuLFAn7PdmclesUX1P_BrFv3_8vPB3o2Rhgme1y2gEdsAbR8NBMJ74GkbgokPmUwKcQTt1LzvsqENTwdfmAgyW59DiuN6D_VXHBdUJj--OSQulA-kuKskbArTj1uXBE3QNzL5N2q7xzLEsZ_kn1xpKlp7dF6Ph69Grw2BRuCFoI5Ungc5LiSFiJBXZJMQKc6tsSiUaTBHZKtKcKmnYEzaWSEkKS1MadGxWeaSSB2K9bmp6KECrKjFWqyjSRhpSOgyRdKaQoVrM42-JZ0sFFrwu3GMH1tTMZ0UsVcLOairVlnjh1VG0PX9H0TM1xwUrovCKKI4-nPiPR__e9am49fFgWLx7c_x2W9yOXaSLz1DcEevddE6PGap05ok3yUtfZOvH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T2%E2%80%90weighted+magnetic+resonance+imaging+texture+as+predictor+of+low+back+pain%3A+A+texture+analysis%E2%80%90based+classification+pipeline+to+symptomatic+and+asymptomatic+cases&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Ketola%2C+Juuso+H.+J.&rft.au=Inkinen%2C+Satu+I.&rft.au=Karppinen%2C+Jaro&rft.au=Niinim%C3%A4ki%2C+Jaakko&rft.date=2021-11-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=39&rft.issue=11&rft.spage=2428&rft.epage=2438&rft_id=info:doi/10.1002%2Fjor.24973&rft.externalDBID=10.1002%252Fjor.24973&rft.externalDocID=JOR24973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon