Neural Network Based Curve Fitting to Enhance the Intelligibility of Dysarthric Speech

Dysarthria is a motor speech disorder resulting from disturbance in neuromuscular control. The speech produced by people with dysarthria is distorted speech, whose intelligibility is poor compared to the normal speakers. This work attempts to increase the intelligibility of dysarthric speech by usin...

Full description

Saved in:
Bibliographic Details
Published inSpeech and Computer Vol. 13721; pp. 545 - 553
Main Authors Pavithra, K. S., Chandrashekar, H. M., Karjigi, Veena
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031209796
9783031209796
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-20980-2_46

Cover

Abstract Dysarthria is a motor speech disorder resulting from disturbance in neuromuscular control. The speech produced by people with dysarthria is distorted speech, whose intelligibility is poor compared to the normal speakers. This work attempts to increase the intelligibility of dysarthric speech by using a fitting function neural network transformation model created by Levenberg-Marquardt algorithm and Bayesian Regularization algorithm. The Linear Predictive coefficients from dysarthric speech signal and normal speech signal are taken as input and target for the fitting model respectively. The modified LP coefficients are obtained for the test dysarthric speech signal using transformation model and modified speech signal is reconstructed using LP synthesis followed by Overlap and Add method. It is observed that the mean opinion score is increased from 1.24 to 1.37 and 1.32 after modification for given set of dysarthric speech signals with Levenberg-Marquardt algorithm and Bayesian Regularization algorithm respectively.
AbstractList Dysarthria is a motor speech disorder resulting from disturbance in neuromuscular control. The speech produced by people with dysarthria is distorted speech, whose intelligibility is poor compared to the normal speakers. This work attempts to increase the intelligibility of dysarthric speech by using a fitting function neural network transformation model created by Levenberg-Marquardt algorithm and Bayesian Regularization algorithm. The Linear Predictive coefficients from dysarthric speech signal and normal speech signal are taken as input and target for the fitting model respectively. The modified LP coefficients are obtained for the test dysarthric speech signal using transformation model and modified speech signal is reconstructed using LP synthesis followed by Overlap and Add method. It is observed that the mean opinion score is increased from 1.24 to 1.37 and 1.32 after modification for given set of dysarthric speech signals with Levenberg-Marquardt algorithm and Bayesian Regularization algorithm respectively.
Author Karjigi, Veena
Chandrashekar, H. M.
Pavithra, K. S.
Author_xml – sequence: 1
  givenname: K. S.
  surname: Pavithra
  fullname: Pavithra, K. S.
  email: pavithra.ks2104@gmail.com
– sequence: 2
  givenname: H. M.
  surname: Chandrashekar
  fullname: Chandrashekar, H. M.
– sequence: 3
  givenname: Veena
  surname: Karjigi
  fullname: Karjigi, Veena
BookMark eNo9kEtOwzAQhs1TtMANWOQChnEmsZMllKeEYAFIsLIcZ0ICURJsF8RtepaejLQgViP9o2_0zzdl213fEWNHAo4FgDrJVcaRAwoeQ54Bj3UiN9gUx2QdPG-yiZBCcMQk3_pfqFxuswkgxDxXCe6yqcAUVA4Kkj126P0bAMQZAoh8wl7uaO5MG91R-Orde3RmPJXRbO4-KbpsQmi61yj0y8VFV5vOUhRqWi5uukBt27w2RdM24Tvqq-Xi_NsbF2rX2OhhILL1AdupTOvp8G_us6fLi8fZNb-9v7qZnd7yQSgM3JalAmOTVEgqrDAo86wssJTpunRRiVLFRFkWF1IqqowosvFRg5WlKrUS91n8e9cPbmxLThd9_-61AL3SqEeNGvWI6LU1vdI4QskvNLj-Y04-aFpRlrow2rC1GQI5r9WoDqXUaYY6lTH-ACtkdlo
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.35
DOI 10.1007/978-3-031-20980-2_46
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 303120980X
9783031209802
EISSN 1611-3349
Editor Agrawal, Shyam S
Karpov, Alexey
Samudravijaya, K
Prasanna, S. R. Mahadeva
Editor_xml – sequence: 1
  fullname: Agrawal, Shyam S
– sequence: 2
  fullname: Karpov, Alexey
– sequence: 3
  fullname: Prasanna, S. R. Mahadeva
– sequence: 4
  fullname: Samudravijaya, K
EndPage 553
ExternalDocumentID EBC7135366_583_562
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-p173t-cdd70ac4516ebc1a3698db3d6550790bf1d72ee882b667efa1b8031a3fcef5c63
ISBN 3031209796
9783031209796
ISSN 0302-9743
IngestDate Tue Jul 29 20:20:23 EDT 2025
Mon Apr 28 21:44:15 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p173t-cdd70ac4516ebc1a3698db3d6550790bf1d72ee882b667efa1b8031a3fcef5c63
OCLC 1350790704
PQID EBC7135366_583_562
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_031_20980_2_46
proquest_ebookcentralchapters_7135366_583_562
PublicationCentury 2000
PublicationDate 2022
20221110
PublicationDateYYYYMMDD 2022-01-01
2022-11-10
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, Proceedings
PublicationTitle Speech and Computer
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002830019
ssj0002792
Score 2.0470314
Snippet Dysarthria is a motor speech disorder resulting from disturbance in neuromuscular control. The speech produced by people with dysarthria is distorted speech,...
SourceID springer
proquest
SourceType Publisher
StartPage 545
SubjectTerms Curve fitting
Dysarthria
Intelligibility
Neural network
Synthesis
Title Neural Network Based Curve Fitting to Enhance the Intelligibility of Dysarthric Speech
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7135366&ppg=562
http://link.springer.com/10.1007/978-3-031-20980-2_46
Volume 13721
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69I2mL3DoJsiQQpGShgx9ODDSxEsTIxshPlS7BeTAkgOkc394jw897GRJF8GWBYvifTry7r67Q-hTnCsaM0OrIDkYKIWKwlzENIxM7SyimGA2gn8-Z7PL5PSKXo1GfwespW0jJvLPvXkl_yNVOAdyNVmyD5Bs96dwAj6DfOEIEobj3uZ3183qcjiutZYuL61tzdDHg25WzXLjsr0mwY_JIIhfqU1RL_VvR6yeTYLz7tfvxebX6qcN7y_AvC2GcDJFPECac8caD77A4gf33W5udHCyctxp2MVOq6VNQWgpmabYp6Pf2kD-t9sakLo05H03eqfTTK3l-vjMRzPm68aSxLqnavXP0EEBtq0lyd1xUO65OHsv245FCyuqyeZNXZvbNrMLtDbYPU4RaqeomSm_SFy5U698qStM6ddx6ooQ31kihqwQuBkAKs-i8Ign7AAdpFkyRo8-T0_PFt16bkosdm47Uy8tsu1iulGZjKFu1K6mU_99kK153y137Jq9ULzd4Vw8Q09M1gs26Sgwf8_RSFcv0NNWBNiL4CVaOCBgDwRsgYAtELAHAm7W2AMBAxDwHhDwusQ9ELADwit0eTK9-DoLfW-O8DpOSRNKpdKokKbNsxYyLgjLMyXg5TbveB6JMlbpkdZgvwnGUl0Wscjg0QtSSl1SychrNK7WlX6DsFSJFjkpNZVJIpNSlFRLGksVGdskig9R2M4RtwwCT1uWbkZqbrpMEsY4zQiH7fwhCtqJ5ObymreluUECnHAYBrcS4EYCbx909Tv0uIf4ezRuNlv9AXaljfjoYfMPzpKD3g
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Speech+and+Computer&rft.au=Pavithra%2C+K.+S.&rft.au=Chandrashekar%2C+H.+M.&rft.au=Karjigi%2C+Veena&rft.atitle=Neural+Network+Based+Curve+Fitting+to+Enhance+the+Intelligibility+of+Dysarthric+Speech&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-11-10&rft.pub=Springer+International+Publishing&rft.isbn=9783031209796&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=545&rft.epage=553&rft_id=info:doi/10.1007%2F978-3-031-20980-2_46
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7135366-l.jpg