Harnessing Uncertainty - Multi-label Dysfluency Classification with Uncertain Labels

Manually labelled datasets inherently contain errors or uncertain/imprecise labelling as sometimes experts cannot agree or are not sure. This issue is even more prominent in multi-label datasets as some labels may be missing. However, discarding samples with high uncertainty may lead to the loss of...

Full description

Saved in:
Bibliographic Details
Published inSpeech and Computer Vol. 13721; pp. 302 - 311
Main Authors Jouaiti, Melanie, Dautenhahn, Kerstin
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031209796
9783031209796
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-20980-2_26

Cover

Abstract Manually labelled datasets inherently contain errors or uncertain/imprecise labelling as sometimes experts cannot agree or are not sure. This issue is even more prominent in multi-label datasets as some labels may be missing. However, discarding samples with high uncertainty may lead to the loss of valuable data. In this paper, we study two datasets where the uncertainty is explicit in the expert annotations. We give an overview of the different approaches available to deal with uncertainty and evaluate them on two dysfluency datasets. Our results show that adopting methods that embrace uncertainty leads to better results than using only labels with high certainty and performs better than current state of the art results.
AbstractList Manually labelled datasets inherently contain errors or uncertain/imprecise labelling as sometimes experts cannot agree or are not sure. This issue is even more prominent in multi-label datasets as some labels may be missing. However, discarding samples with high uncertainty may lead to the loss of valuable data. In this paper, we study two datasets where the uncertainty is explicit in the expert annotations. We give an overview of the different approaches available to deal with uncertainty and evaluate them on two dysfluency datasets. Our results show that adopting methods that embrace uncertainty leads to better results than using only labels with high certainty and performs better than current state of the art results.
Author Jouaiti, Melanie
Dautenhahn, Kerstin
Author_xml – sequence: 1
  givenname: Melanie
  surname: Jouaiti
  fullname: Jouaiti, Melanie
  email: mjouaiti@uwaterloo.ca
– sequence: 2
  givenname: Kerstin
  surname: Dautenhahn
  fullname: Dautenhahn, Kerstin
BookMark eNpFkE1OwzAQhQ0URFt6Axa5gGGcce14icpPkYrYtBI7y3UcGoicErtCvT1Oi2AxGunNe6OZb0QGvvWOkGsGNwxA3ipZUKSAjOagCqC5zsUJGWFSDsLbKRkywRhF5OrsbyCVGJAhIORUSY4XZMRwClKBBH5JJiF8AEBeIABTQ7Kcm867EGr_nq28dV00tY_7jGYvuybWtDFr12T3-1A1O-ftPps1Jrmr2ppYtz77ruPmP5gtenu4IueVaYKb_PYxWT0-LGdzunh9ep7dLeiWSYzUKFs5swaD6TbBSsagLJiouHSlLVCWpa1sUZRTBrYCZdEa6RRaycuCi6nBMcmPe8O2Sw-4Tq_b9jNoBronqBNBjTph0QdguieYQvwY2nbt186FqF2fss7HzjR2Y7bRdUHLRA2F0Mh4KoU_qEVyYg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.35
DOI 10.1007/978-3-031-20980-2_26
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 303120980X
9783031209802
EISSN 1611-3349
Editor Agrawal, Shyam S
Karpov, Alexey
Samudravijaya, K
Prasanna, S. R. Mahadeva
Editor_xml – sequence: 1
  fullname: Agrawal, Shyam S
– sequence: 2
  fullname: Karpov, Alexey
– sequence: 3
  fullname: Prasanna, S. R. Mahadeva
– sequence: 4
  fullname: Samudravijaya, K
EndPage 311
ExternalDocumentID EBC7135366_314_319
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-p173t-a9cfeab0a307061d110d816f47edc837ddcfc88d510cf09c3ca7e93c74d8465a3
ISBN 3031209796
9783031209796
ISSN 0302-9743
IngestDate Tue Jul 29 20:20:25 EDT 2025
Mon Apr 28 21:44:15 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p173t-a9cfeab0a307061d110d816f47edc837ddcfc88d510cf09c3ca7e93c74d8465a3
OCLC 1350790704
PQID EBC7135366_314_319
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_031_20980_2_26
proquest_ebookcentralchapters_7135366_314_319
PublicationCentury 2000
PublicationDate 2022
20221110
PublicationDateYYYYMMDD 2022-01-01
2022-11-10
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, SPECOM 2022, Gurugram, India, November 14-16, 2022, Proceedings
PublicationTitle Speech and Computer
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002830019
ssj0002792
Score 2.0471597
Snippet Manually labelled datasets inherently contain errors or uncertain/imprecise labelling as sometimes experts cannot agree or are not sure. This issue is even...
SourceID springer
proquest
SourceType Publisher
StartPage 302
SubjectTerms Dysfluency classification
Transfer learning
Uncertainty
Title Harnessing Uncertainty - Multi-label Dysfluency Classification with Uncertain Labels
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7135366&ppg=319
http://link.springer.com/10.1007/978-3-031-20980-2_26
Volume 13721
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbK9lL1QJ8qLUU-lNPKlR0ncXLggBAIoYUTW3GzHNsRlaqAuuFAf01_C7-sM3Zeu3Chh412I-exnk8z4_F8M4R845WosjKpWS0Lx1JlSmbADDNbZt4IiXR0JDifX-Sny_TsKrsaU4cCu6Stvts_T_JK_keqcA7kiizZZ0h2uCmcgO8gXziChOG44fyuh1kjh-PWext5aX1rhjEd5s78jPv05_4XksjHgDSMa67NdRNJOeD7daW3x15BqPwwgLAEPIR8AfDT2TwwdRlgxoOevF_F1ib3sakmphtFIGFYd_8o2T_kw9XzBV4TXXecFb86WHQbFxc3bcgHG_5Ar2qmsQhYxoZ8uEexyI1o5hhQW1u8gvFE4q6KHW17EhcoaFjiRJ3no07OsdKijJVNOz0reTIx2TLq60fWYJoAAg8D7JQFZ4lO8i2ypYp0Rl4eHp8tfgymG6spDhE6LI3GQ2eY4a2QHDS8dSzfNP6eEDOfeuTaEmZj1z04M5dvyGskuFBknsD8vSUvfPOObPcioJ0I3pPliAU6wQJldIIFOmKBrmOBIhYe_g5X0oiDD2R5cnx5dMq6LhzsVijZMlPa2puKG7QOuXDgL7pC5HWqvLOFVM7Z2haFA-Vua15aaY3ypbQqdeDbZkZ-JLPmpvGfCOWV47mvuVU1rPpNUhlhMq9kZopKCMd3COunSIdcgS5B2cYJWWnsJynzXEuRwqfcIfN-HjUOX-m-CDcIQEsNAtBBABoF8PlZo7-QVyPCd8ms_X3nv4L_2VZ7HWr-AZbOgDA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Speech+and+Computer&rft.au=Jouaiti%2C+Melanie&rft.au=Dautenhahn%2C+Kerstin&rft.atitle=Harnessing+Uncertainty+-+Multi-label+Dysfluency+Classification+with%C2%A0Uncertain+Labels&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-11-10&rft.pub=Springer+International+Publishing&rft.isbn=9783031209796&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=302&rft.epage=311&rft_id=info:doi/10.1007%2F978-3-031-20980-2_26
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7135366-l.jpg