Classification of benign and malignant tumor cells using random tree and knn classifiers from Wisconsin dataset for the potential diagnostic application

Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) m...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2816; no. 1
Main Authors Koyyala, Umakanth, Thirunavukkarasu, Usharani
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 22.03.2024
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/5.0186646

Cover

Loading…
Abstract Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) masses are collected from the kaggle machine learning repository for the proposed study. The dataset contains 21 attributes which are considered as inputs to our study. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. IBM SPSS software was used for the statistical analysis. The classifier’s performance was compared using an independent sample t-test and SPSS software. There was a statistically significant difference (p0.05) between the groups. The KNN classifier achieved the classification accuracy rate as 95.23%, which is higher than the Random tree classifier (90.47%). Conclusion: The KNN classifier shows the higher accuracy value when compared to the Random tree classifier for predicting the benign and malignant tumor cells using WDBC dataset.
AbstractList Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) masses are collected from the kaggle machine learning repository for the proposed study. The dataset contains 21 attributes which are considered as inputs to our study. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. IBM SPSS software was used for the statistical analysis. The classifier’s performance was compared using an independent sample t-test and SPSS software. There was a statistically significant difference (p0.05) between the groups. The KNN classifier achieved the classification accuracy rate as 95.23%, which is higher than the Random tree classifier (90.47%). Conclusion: The KNN classifier shows the higher accuracy value when compared to the Random tree classifier for predicting the benign and malignant tumor cells using WDBC dataset.
Author Thirunavukkarasu, Usharani
Koyyala, Umakanth
Author_xml – sequence: 1
  givenname: Umakanth
  surname: Koyyala
  fullname: Koyyala, Umakanth
  organization: Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
– sequence: 2
  givenname: Usharani
  surname: Thirunavukkarasu
  fullname: Thirunavukkarasu, Usharani
  email: usharani.sse@saveetha.com
  organization: Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
BookMark eNotkMtKxDAUhoOM4Di68A0C7oSOSXNpspTBGwy4UXRXkjQdM7ZJTdKFb-LjWme6OgfOx39-vnOw8MFbAK4wWmPEyS1bIyw4p_wELDFjuKg45guwREjSoqTk4wycp7RHqJRVJZbgd9OplFzrjMoueBhaqK13Ow-Vb2CvumlVPsM89iFCY7suwTE5v4NxAkIPc7T2wH55D80cZmOCbZyu7y6Z4CceNiqrZDNsp5j8aeEQsvXZqQ42Tu18SNkZqIahm5tcgNNWdcleznMF3h7uXzdPxfbl8Xlzty0GzAUvSqkFQ7LBRmCGjZESU81lRbUQValo2XBdaWo00abRpKLGWCMZ0tgo0bQNWYHrY-4Qw_doU673YYx-ellPikjJqCBiom6OVDIuH_rVQ3S9ij81RvW_-ZrVs3nyB-TZezU
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2024 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0186646
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Ohene-Akoto, Ing. Justice
Bhadoria, Vikas Singh
Singh, Ravendra
Arunprasad, G
Shouran, Mokhtar
Ambikapathy, A
Editor_xml – sequence: 1
  givenname: A
  surname: Ambikapathy
  fullname: Ambikapathy, A
  organization: Galgotias College of Engineering and Technology
– sequence: 2
  givenname: G
  surname: Arunprasad
  fullname: Arunprasad, G
  organization: Galgotias College of Engineering and Technology
– sequence: 3
  givenname: Ravendra
  surname: Singh
  fullname: Singh, Ravendra
  organization: Galgotias College of Engineering and Technology
– sequence: 4
  givenname: Vikas Singh
  surname: Bhadoria
  fullname: Bhadoria, Vikas Singh
  organization: ABES Engineering College
– sequence: 5
  givenname: Ing. Justice
  surname: Ohene-Akoto
  fullname: Ohene-Akoto, Ing. Justice
  organization: Kwame Nkrumah University of Science and Technology (KNUST)
– sequence: 6
  givenname: Mokhtar
  surname: Shouran
  fullname: Shouran, Mokhtar
  organization: Cardiff University
ExternalDocumentID acp
Genre Conference Proceeding
GeographicLocations United States--US
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States--US
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p1686-29b8509d1c8151cc9914b6974b8872a42d6b7b4cb3bcdb374ccec950b1ca8dfd3
ISSN 0094-243X
IngestDate Sun Jun 29 12:23:47 EDT 2025
Fri Jun 21 00:10:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2024/2816/030009/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MeetingName ADVANCE COMPUTING AND INGENIOUS TECHNOLOGY IN ENGINEERING SCIENCE
MergedId FETCHMERGED-LOGICAL-p1686-29b8509d1c8151cc9914b6974b8872a42d6b7b4cb3bcdb374ccec950b1ca8dfd3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186646/19843519/030009_1_5.0186646.pdf
PQID 2973254838
PQPubID 2050672
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0186646
proquest_journals_2973254838
PublicationCentury 2000
PublicationDate 20240322
PublicationDateYYYYMMDD 2024-03-22
PublicationDate_xml – month: 03
  year: 2024
  text: 20240322
  day: 22
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Bezerra, Da Silva, Oliveira, Brasil, Vasconcelos, Mamede, De Oliveira (c5) 2018; 13
Ireaneus, Rejani, Selvi (c11) 2009; 1
Aribal, Mora, Chaturvedi, Hertl, Davidović, Salama, Gershan, Kadivec, Odio, Popli, Kisembo, Sabih, Vujnović, Kayhan, Delis, Paez, Giammarile (c7) 2019; 115
Nassar, Chamandi, Tfaily, Zgheib, Nasr (c14) 2020; 7
Birnbaum, Duggan, Anderson, Etzioni (c4) 2018; 6
Ming, Viassolo, Probst-Hensch, Chappuis, Dinov, Katapodi (c12) 2019; 21
Ashok, Ajith, Sivanesan (c6) 2017; 44
Houssami, Kirkpatrick-Jones, Noguchi, Lee (c10) 2019; 16
Mohammed, Darrab, Noaman, Saake (c13) 2020; 1234
Delen, Walker, Kadam (c1) 2005; 34
Cruz, Wishart (c2) 2017; 2
AlFayez, El-Soud, Gaber (c8) 2020; 10
Thirunavukkarasu, Umapathy, Krishnan, Janardanan (c3) 2020
Siegel, Miller, Jemal (c9) 2017; 67
References_xml – volume: 16
  start-page: 351
  year: 2019
  ident: c10
  publication-title: Taylor Fr.
– volume: 67
  start-page: 7
  year: 2017
  ident: c9
  publication-title: CA. Cancer J. Clin.
– volume: 44
  start-page: 327
  year: 2017
  ident: c6
  publication-title: Clin. Exp. Pharmacol. Physiol.
– volume: 6
  start-page: e885
  year: 2018
  ident: c4
  publication-title: Lancet Glob. Heal.
– volume: 10
  start-page: 551
  year: 2020
  ident: c8
  publication-title: Appl. Sci.
– volume: 1234
  start-page: 108
  year: 2020
  ident: c13
  publication-title: Commun. Comput. Inf. Sci.
– volume: 21
  year: 2019
  ident: c12
  publication-title: Breast Cancer Res.
– year: 2020
  ident: c3
  publication-title: Evidence-Based Complementary and Alternative Medicine
– volume: 1
  start-page: 127
  year: 2009
  ident: c11
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 7
  year: 2020
  ident: c14
  publication-title: Front. Med.
– volume: 34
  start-page: 113
  year: 2005
  ident: c1
  publication-title: Artif. Intell. Med.
– volume: 2
  start-page: 59
  year: 2017
  ident: c2
  publication-title: Cancer Inform.
– volume: 115
  start-page: 31
  year: 2019
  ident: c7
  publication-title: Eur. J. Radiol.
– volume: 13
  year: 2018
  ident: c5
  publication-title: PLoS One
SSID ssj0029778
Score 2.3492286
Snippet Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for...
SourceID proquest
scitation
SourceType Aggregation Database
Publisher
SubjectTerms Classifiers
Data mining
Data systems
Datasets
Diagnostic software
K-nearest neighbors algorithm
Machine learning
Software
Statistical analysis
Tumors
Title Classification of benign and malignant tumor cells using random tree and knn classifiers from Wisconsin dataset for the potential diagnostic application
URI http://dx.doi.org/10.1063/5.0186646
https://www.proquest.com/docview/2973254838
Volume 2816
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtNAEIZXIRWCOw5FFAoaCe4sQ22vD7msoFWBUCphi9xZ3rUDUYgd-YBUHoEn4HGZWdtrR42Q4CYHy1lZni-emd1_Zhl7ySV1CEkdE99SkyfLEzNILeoiKqh9uaQOnKS2uPQuIv5-4S4mk18j1VJTi1fy5966kv-xKh5Du1KV7D9YVg-KB_Az2hdf0cL4etPGe13N6bsrEo73zWKHc6oxC2rnS9IE6fhQZDltyEmz5huMxL-SHMaom01RGjSVXxmNmkNAR5ZS-UmZtasM6zw3ZDcYVf6q4pQvq0qSzDY3SG5aZbWWLm6LmsRIah1IKfpUd9hhyby3drRJ1ngBaobnQ3F9nXzXziL8tiqbPPnRrNdJmVSNEVXUYjpfjacrbE56LXtIbvU61I4WQqld5Xh2ErNO0-Zqq2B0U92z2bUQqbY0s39420H3fYTpDa-AYRiakvqzBp7H93TevvwUn0fzeRyeLcJb7MBGSvmUHZy-_Tj_rNN3jJRbv95dWt-nynNe66F38pQ7GMS0eopRyBLeY4dDMSdcaS7us0mWP2C3u3vxkP3ehQOKJbRwABocNByg4AAFByg4oIUDCA51LsIBIziA4AANB3RwAMIBCAdoOGCAA0ZwHLLo_Cx8c2F223WYW8sLPNOeiQDDz9SSAYaRUmLmwYWH-apAR2Yn3E494QsuhSNkKhyfS5nJmXsiLJkE6TJ1HrFpXuTZYwaCNh7ASD5x_Yw7ARf4vJsJ6UsHf-Nn8ogd97c57v6PVUy7sNmYgDvBEXuhb328bbu2xEpt4TmxG3e2evL3QZ6yuwO_x2xal032DAPQWjzvyPgDyE2UaQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Classification+of+benign+and+malignant+tumor+cells+using+random+tree+and+knn+classifiers+from+Wisconsin+dataset+for+the+potential+diagnostic+application&rft.au=Umakanth%2C+Koyyala&rft.au=Thirunavukkarasu+Usharani&rft.date=2024-03-22&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2816&rft.issue=1&rft_id=info:doi/10.1063%2F5.0186646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon