Classification of benign and malignant tumor cells using random tree and knn classifiers from Wisconsin dataset for the potential diagnostic application
Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) m...
Saved in:
Published in | AIP conference proceedings Vol. 2816; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Melville
American Institute of Physics
22.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-243X 1551-7616 |
DOI | 10.1063/5.0186646 |
Cover
Loading…
Abstract | Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) masses are collected from the kaggle machine learning repository for the proposed study. The dataset contains 21 attributes which are considered as inputs to our study. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. IBM SPSS software was used for the statistical analysis. The classifier’s performance was compared using an independent sample t-test and SPSS software. There was a statistically significant difference (p0.05) between the groups. The KNN classifier achieved the classification accuracy rate as 95.23%, which is higher than the Random tree classifier (90.47%). Conclusion: The KNN classifier shows the higher accuracy value when compared to the Random tree classifier for predicting the benign and malignant tumor cells using WDBC dataset. |
---|---|
AbstractList | Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for possible diagnostic applications. Materials and Methods: Breast cancer report and data system (WDBC) with benign (n=21) and malignant (n=21) masses are collected from the kaggle machine learning repository for the proposed study. The dataset contains 21 attributes which are considered as inputs to our study. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. IBM SPSS software was used for the statistical analysis. The classifier’s performance was compared using an independent sample t-test and SPSS software. There was a statistically significant difference (p0.05) between the groups. The KNN classifier achieved the classification accuracy rate as 95.23%, which is higher than the Random tree classifier (90.47%). Conclusion: The KNN classifier shows the higher accuracy value when compared to the Random tree classifier for predicting the benign and malignant tumor cells using WDBC dataset. |
Author | Thirunavukkarasu, Usharani Koyyala, Umakanth |
Author_xml | – sequence: 1 givenname: Umakanth surname: Koyyala fullname: Koyyala, Umakanth organization: Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India – sequence: 2 givenname: Usharani surname: Thirunavukkarasu fullname: Thirunavukkarasu, Usharani email: usharani.sse@saveetha.com organization: Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India |
BookMark | eNotkMtKxDAUhoOM4Di68A0C7oSOSXNpspTBGwy4UXRXkjQdM7ZJTdKFb-LjWme6OgfOx39-vnOw8MFbAK4wWmPEyS1bIyw4p_wELDFjuKg45guwREjSoqTk4wycp7RHqJRVJZbgd9OplFzrjMoueBhaqK13Ow-Vb2CvumlVPsM89iFCY7suwTE5v4NxAkIPc7T2wH55D80cZmOCbZyu7y6Z4CceNiqrZDNsp5j8aeEQsvXZqQ42Tu18SNkZqIahm5tcgNNWdcleznMF3h7uXzdPxfbl8Xlzty0GzAUvSqkFQ7LBRmCGjZESU81lRbUQValo2XBdaWo00abRpKLGWCMZ0tgo0bQNWYHrY-4Qw_doU673YYx-ellPikjJqCBiom6OVDIuH_rVQ3S9ij81RvW_-ZrVs3nyB-TZezU |
CODEN | APCPCS |
ContentType | Journal Article Conference Proceeding |
Copyright | Author(s) 2024 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published by AIP Publishing. |
DBID | 8FD H8D L7M |
DOI | 10.1063/5.0186646 |
DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1551-7616 |
Editor | Ohene-Akoto, Ing. Justice Bhadoria, Vikas Singh Singh, Ravendra Arunprasad, G Shouran, Mokhtar Ambikapathy, A |
Editor_xml | – sequence: 1 givenname: A surname: Ambikapathy fullname: Ambikapathy, A organization: Galgotias College of Engineering and Technology – sequence: 2 givenname: G surname: Arunprasad fullname: Arunprasad, G organization: Galgotias College of Engineering and Technology – sequence: 3 givenname: Ravendra surname: Singh fullname: Singh, Ravendra organization: Galgotias College of Engineering and Technology – sequence: 4 givenname: Vikas Singh surname: Bhadoria fullname: Bhadoria, Vikas Singh organization: ABES Engineering College – sequence: 5 givenname: Ing. Justice surname: Ohene-Akoto fullname: Ohene-Akoto, Ing. Justice organization: Kwame Nkrumah University of Science and Technology (KNUST) – sequence: 6 givenname: Mokhtar surname: Shouran fullname: Shouran, Mokhtar organization: Cardiff University |
ExternalDocumentID | acp |
Genre | Conference Proceeding |
GeographicLocations | United States--US Wisconsin |
GeographicLocations_xml | – name: Wisconsin – name: United States--US |
GroupedDBID | -~X 23M 5GY AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACZLF ADCTM AEJMO AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN F5P FDOHQ FFFMQ HAM M71 M73 RIP RQS SJN ~02 8FD ABJGX ADMLS H8D L7M |
ID | FETCH-LOGICAL-p1686-29b8509d1c8151cc9914b6974b8872a42d6b7b4cb3bcdb374ccec950b1ca8dfd3 |
ISSN | 0094-243X |
IngestDate | Sun Jun 29 12:23:47 EDT 2025 Fri Jun 21 00:10:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 0094-243X/2024/2816/030009/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MeetingName | ADVANCE COMPUTING AND INGENIOUS TECHNOLOGY IN ENGINEERING SCIENCE |
MergedId | FETCHMERGED-LOGICAL-p1686-29b8509d1c8151cc9914b6974b8872a42d6b7b4cb3bcdb374ccec950b1ca8dfd3 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0186646/19843519/030009_1_5.0186646.pdf |
PQID | 2973254838 |
PQPubID | 2050672 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0186646 proquest_journals_2973254838 |
PublicationCentury | 2000 |
PublicationDate | 20240322 |
PublicationDateYYYYMMDD | 2024-03-22 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240322 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP conference proceedings |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Bezerra, Da Silva, Oliveira, Brasil, Vasconcelos, Mamede, De Oliveira (c5) 2018; 13 Ireaneus, Rejani, Selvi (c11) 2009; 1 Aribal, Mora, Chaturvedi, Hertl, Davidović, Salama, Gershan, Kadivec, Odio, Popli, Kisembo, Sabih, Vujnović, Kayhan, Delis, Paez, Giammarile (c7) 2019; 115 Nassar, Chamandi, Tfaily, Zgheib, Nasr (c14) 2020; 7 Birnbaum, Duggan, Anderson, Etzioni (c4) 2018; 6 Ming, Viassolo, Probst-Hensch, Chappuis, Dinov, Katapodi (c12) 2019; 21 Ashok, Ajith, Sivanesan (c6) 2017; 44 Houssami, Kirkpatrick-Jones, Noguchi, Lee (c10) 2019; 16 Mohammed, Darrab, Noaman, Saake (c13) 2020; 1234 Delen, Walker, Kadam (c1) 2005; 34 Cruz, Wishart (c2) 2017; 2 AlFayez, El-Soud, Gaber (c8) 2020; 10 Thirunavukkarasu, Umapathy, Krishnan, Janardanan (c3) 2020 Siegel, Miller, Jemal (c9) 2017; 67 |
References_xml | – volume: 16 start-page: 351 year: 2019 ident: c10 publication-title: Taylor Fr. – volume: 67 start-page: 7 year: 2017 ident: c9 publication-title: CA. Cancer J. Clin. – volume: 44 start-page: 327 year: 2017 ident: c6 publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 6 start-page: e885 year: 2018 ident: c4 publication-title: Lancet Glob. Heal. – volume: 10 start-page: 551 year: 2020 ident: c8 publication-title: Appl. Sci. – volume: 1234 start-page: 108 year: 2020 ident: c13 publication-title: Commun. Comput. Inf. Sci. – volume: 21 year: 2019 ident: c12 publication-title: Breast Cancer Res. – year: 2020 ident: c3 publication-title: Evidence-Based Complementary and Alternative Medicine – volume: 1 start-page: 127 year: 2009 ident: c11 publication-title: Int. J. Comput. Sci. Eng. – volume: 7 year: 2020 ident: c14 publication-title: Front. Med. – volume: 34 start-page: 113 year: 2005 ident: c1 publication-title: Artif. Intell. Med. – volume: 2 start-page: 59 year: 2017 ident: c2 publication-title: Cancer Inform. – volume: 115 start-page: 31 year: 2019 ident: c7 publication-title: Eur. J. Radiol. – volume: 13 year: 2018 ident: c5 publication-title: PLoS One |
SSID | ssj0029778 |
Score | 2.3492286 |
Snippet | Aim: The study’s goal is to categorise benign and malignant tumour cells from the Wisconsin dataset using Random tree and K-nearest neighbour classifiers for... |
SourceID | proquest scitation |
SourceType | Aggregation Database Publisher |
SubjectTerms | Classifiers Data mining Data systems Datasets Diagnostic software K-nearest neighbors algorithm Machine learning Software Statistical analysis Tumors |
Title | Classification of benign and malignant tumor cells using random tree and knn classifiers from Wisconsin dataset for the potential diagnostic application |
URI | http://dx.doi.org/10.1063/5.0186646 https://www.proquest.com/docview/2973254838 |
Volume | 2816 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtNAEIZXIRWCOw5FFAoaCe4sQ22vD7msoFWBUCphi9xZ3rUDUYgd-YBUHoEn4HGZWdtrR42Q4CYHy1lZni-emd1_Zhl7ySV1CEkdE99SkyfLEzNILeoiKqh9uaQOnKS2uPQuIv5-4S4mk18j1VJTi1fy5966kv-xKh5Du1KV7D9YVg-KB_Az2hdf0cL4etPGe13N6bsrEo73zWKHc6oxC2rnS9IE6fhQZDltyEmz5huMxL-SHMaom01RGjSVXxmNmkNAR5ZS-UmZtasM6zw3ZDcYVf6q4pQvq0qSzDY3SG5aZbWWLm6LmsRIah1IKfpUd9hhyby3drRJ1ngBaobnQ3F9nXzXziL8tiqbPPnRrNdJmVSNEVXUYjpfjacrbE56LXtIbvU61I4WQqld5Xh2ErNO0-Zqq2B0U92z2bUQqbY0s39420H3fYTpDa-AYRiakvqzBp7H93TevvwUn0fzeRyeLcJb7MBGSvmUHZy-_Tj_rNN3jJRbv95dWt-nynNe66F38pQ7GMS0eopRyBLeY4dDMSdcaS7us0mWP2C3u3vxkP3ehQOKJbRwABocNByg4AAFByg4oIUDCA51LsIBIziA4AANB3RwAMIBCAdoOGCAA0ZwHLLo_Cx8c2F223WYW8sLPNOeiQDDz9SSAYaRUmLmwYWH-apAR2Yn3E494QsuhSNkKhyfS5nJmXsiLJkE6TJ1HrFpXuTZYwaCNh7ASD5x_Yw7ARf4vJsJ6UsHf-Nn8ogd97c57v6PVUy7sNmYgDvBEXuhb328bbu2xEpt4TmxG3e2evL3QZ6yuwO_x2xal032DAPQWjzvyPgDyE2UaQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Classification+of+benign+and+malignant+tumor+cells+using+random+tree+and+knn+classifiers+from+Wisconsin+dataset+for+the+potential+diagnostic+application&rft.au=Umakanth%2C+Koyyala&rft.au=Thirunavukkarasu+Usharani&rft.date=2024-03-22&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2816&rft.issue=1&rft_id=info:doi/10.1063%2F5.0186646&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon |