A multiscale morphological segmentation and classification of brain tumor using supervised learning algorithm

A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level ima...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2966; no. 1
Main Authors Krishnan, Pavihaa Lakshmi Babu Muthu, Sampath, Vidhya
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 26.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level images of Magnetic resonance imaging (MRI) brain tumor are segmented using K-means Multiscale morphology and the Discrete Cosine Transform (DCT), Pigmentation, orientation, Discrete Fourier Transform (DFT), Lesion margin, lesion intensity, lesion variation features of segmented images are analyzed. Based on the features the input dataset is classified by using KNN algorithm. As a result, the MRI brain tumor is classified into 4 types Glioma tumor, Pituitary tumor, Meningioma tumor, no tumor. The proposed KNN algorithm is compared with support vector machine algorithm and this work eventually proved that the performance of KNN is very good than Support vector machines (SVM) in classifying tumor types. The performance analysis calculated using accuracy, precision, recall, g-mean, sensitivity and specificity. MATLAB R2019b is used as the simulation tool for the analysis.
AbstractList A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level images of Magnetic resonance imaging (MRI) brain tumor are segmented using K-means Multiscale morphology and the Discrete Cosine Transform (DCT), Pigmentation, orientation, Discrete Fourier Transform (DFT), Lesion margin, lesion intensity, lesion variation features of segmented images are analyzed. Based on the features the input dataset is classified by using KNN algorithm. As a result, the MRI brain tumor is classified into 4 types Glioma tumor, Pituitary tumor, Meningioma tumor, no tumor. The proposed KNN algorithm is compared with support vector machine algorithm and this work eventually proved that the performance of KNN is very good than Support vector machines (SVM) in classifying tumor types. The performance analysis calculated using accuracy, precision, recall, g-mean, sensitivity and specificity. MATLAB R2019b is used as the simulation tool for the analysis.
Author Krishnan, Pavihaa Lakshmi Babu Muthu
Sampath, Vidhya
Author_xml – sequence: 1
  givenname: Pavihaa Lakshmi Babu Muthu
  surname: Krishnan
  fullname: Krishnan, Pavihaa Lakshmi Babu Muthu
  email: pavihaalakshmi.b2021@vitstudent.ac.in
  organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 2
  givenname: Vidhya
  surname: Sampath
  fullname: Sampath, Vidhya
  organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
BookMark eNotUMtqwzAQFCWFJmkP_QNBbwWneliydAyhLwj00kJvRrZXjoItuZJd6N_XbXJadnZmh5kVWvjgAaFbSjaUSP4gNoQqrRi7QEsqBM0KSeUCLQnRecZy_nmFVikdCWG6KNQS9VvcT93oUm06wH2IwyF0oXXzihO0PfjRjC54bHyD686k5Ox8_IeCxVU0zuNxmoV4Ss63OE0DxG-XoMEdmOj_MNO1Ibrx0F-jS2u6BDfnuUYfT4_vu5ds__b8utvus4FKxbKcF5XmkprKKjBEcxBSFiJnpAJdaM6kbKwl2hBacSUEKLA2zyvbkLqm0PA1ujv9HWL4miCN5TFM0c-WJdNKcl1QxWbW_YmVandKWQ7R9Sb-lJSUf3WWojzXyX8BJyBrRg
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2024 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0189822
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor B, Jaganatha Pandian
Meng, Pang Ming
N, Amutha Prabha
Gudipalli, Abhishek
Vairavasundaram, Indragandhi
Vaithilingam, Chockalingam Aravind
Editor_xml – sequence: 1
  givenname: Abhishek
  surname: Gudipalli
  fullname: Gudipalli, Abhishek
  organization: Vellore Institute of Technology
– sequence: 2
  givenname: Jaganatha Pandian
  surname: B
  fullname: B, Jaganatha Pandian
  organization: Vellore Institute of Technology
– sequence: 3
  givenname: Amutha Prabha
  surname: N
  fullname: N, Amutha Prabha
  organization: Vellore Institute of Technology
– sequence: 4
  givenname: Indragandhi
  surname: Vairavasundaram
  fullname: Vairavasundaram, Indragandhi
  organization: Vellore Institute of Technology
– sequence: 5
  givenname: Chockalingam Aravind
  surname: Vaithilingam
  fullname: Vaithilingam, Chockalingam Aravind
  organization: Taylor’s University
– sequence: 6
  givenname: Pang Ming
  surname: Meng
  fullname: Meng, Pang Ming
  organization: Taylor’s University
ExternalDocumentID acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p1682-437b9361abf8ea093e56675420be9793266dff09a01b3855e8eff44bfd0cc1ed3
ISSN 0094-243X
IngestDate Sun Jun 29 15:53:16 EDT 2025
Fri Jun 21 00:10:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2024/2966/020019/11/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MeetingName EMERGING TRENDS IN SIGNAL PROCESSING, INSTRUMENTATION, POWER, CONTROL, AND AUTOMATION SYSTEMS
MergedId FETCHMERGED-LOGICAL-p1682-437b9361abf8ea093e56675420be9793266dff09a01b3855e8eff44bfd0cc1ed3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0189822/19851732/020019_1_5.0189822.pdf
PQID 2986397182
PQPubID 2050672
PageCount 11
ParticipantIDs scitation_primary_10_1063_5_0189822
proquest_journals_2986397182
PublicationCentury 2000
PublicationDate 20240326
PublicationDateYYYYMMDD 2024-03-26
PublicationDate_xml – month: 03
  year: 2024
  text: 20240326
  day: 26
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Motlak (c11) 2019; 14
Abdelaziz (c9) 2021; 31
Soleymanifard, Hamghalam (c7) 2022; 81
Mzoughi, Njeh, Ben Slima, Ben Hamida, Mhiri, Ben Mahfoudh (c4) 2019; 6
Ayadi (c20) 2022; 38
Leo (c13) 2019; 1362
Saeed (c15) 2022; 81
Srinivas, Rao (c16) 2019; 8
Rao, Srinivas (c5) 2019
Udaka, Packer (c3) 2018; 36
Moorthy, Britto (c8) 2021; 11
KK, MD (c22) 2018; 19
Kaplan (c19) 2020; 139
Nanmaran (c14) 2022; 2022
Ostrom (c1) 2019; 21
Hasan, Ahmad (c6) 2018; 5
Budati, Kumar, Katta (c25) 2022; 24
Sumathi, Venkatesulu (c10) 2021; 1979
Barnholtz-Sloan, Ostrom, Cote (c2) 2018; 36
Khairandish, Omid (c21) 2022; 43
References_xml – volume: 24
  start-page: 10570
  year: 2022
  ident: c25
  article-title: An automated brain tumor detection and classification from MRI images using machine learning technique s with IoT
  publication-title: Environment, Development and Sustainability
– volume: 1362
  start-page: 012073
  year: 2019
  ident: c13
  article-title: MRI Brain Image Segmentation and Detection Using K-NN Classification
  publication-title: Journal of Physics: Conference Series
– volume: 43
  start-page: 290
  year: 2022
  ident: c21
  article-title: A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images
  publication-title: Irbm
– volume: 36
  start-page: 395
  year: 2018
  ident: c2
  article-title: Epidemiology of Brain Tumors
  publication-title: Neurologic Clinics
– volume: 6
  start-page: 1
  year: 2019
  ident: c4
  article-title: Denoising and contrast-enhancement ap-proach of magnetic resonance imaging glioblastoma brain tumors
  publication-title: Journal of Medical Imaging
– volume: 14
  start-page: 3625
  year: 2019
  ident: c11
  article-title: MRI Technique Based Detection and Classification of Brain Tumor using Support Vector Machine (SVM) and k-Nearest Neighbor (kNN
  publication-title: Journal of Engineering and Applied Sciences
– year: 2019
  ident: c5
  article-title: De-Noising of MRI Brain Tumor Image using Deep Convolutional Neural Network
  publication-title: SSRN Electronic Journal
– volume: 31
  start-page: 2226
  year: 2021
  ident: c9
  article-title: Automatic brain tumor segmentation for a computer-aided diagnosis system
  publication-title: International Journal of Imaging Systems and Technology
– volume: 38
  start-page: 107
  year: 2022
  ident: c20
  article-title: Brain tumor classification based on hybrid approach
  publication-title: The Visual Computer
– volume: 81
  start-page: 18595
  year: 2022
  ident: c15
  article-title: New techniques for efficiently k-NN algorithm for brain tumor detection
  publication-title: Multimedia Tools and Applications
– volume: 139
  start-page: 109696
  year: 2020
  ident: c19
  article-title: Brain tumor classification using modified local binary patterns (LBP) feature extraction methods
  publication-title: Medical hypotheses
– volume: 2022
  start-page: 1
  year: 2022
  ident: c14
  article-title: Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 81
  start-page: 8451
  year: 2022
  ident: c7
  article-title: Multistage glioma segmentation for tumour grade classification based on multiscale fuzzy Cmeans
  publication-title: Multimedia Tools and Applications
– volume: 36
  start-page: 533
  year: 2018
  ident: c3
  article-title: Pediatric Brain Tumors
  publication-title: Neurologic Clinics
– volume: 5
  year: 2018
  ident: c6
  article-title: Two-step verification of brain tumor segmentation using watershedmatching algorithm
  publication-title: Brain Informatics
– volume: 1979
  start-page: 012047
  year: 2021
  ident: c10
  article-title: An Automated Hybrid Approach for Multimodal Tumor Segmentation
  publication-title: Journal of Physics: Conference Series
– volume: 8
  start-page: 2277
  year: 2019
  ident: c16
  article-title: A hybrid CNN-KNN model for MRI brain tumor classification
  publication-title: International Journal of Recent Tech-nology and Engineering (IJRTE)
– volume: 21
  start-page: 1357
  year: 2019
  ident: c1
  article-title: Risk factors for childhood and adult primary brain tumors
  publication-title: Neuro-Oncology
– volume: 11
  start-page: 3133
  year: 2021
  ident: c8
  article-title: An Efficient Framework for the Segmentation of Glioma Brain Tumor Using Image Fusion and CoActive Adaptive Neuro Fuzzy Inference System Classification Method
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 19
  start-page: 2789
  year: 2018
  ident: c22
  article-title: An Efficient Method for Brain Tumor Detection Using Texture Features and SVM Classifier in MR Images
  publication-title: Asian Pac J Cancer Prev.
SSID ssj0029778
Score 2.36262
Snippet A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to...
SourceID proquest
scitation
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Brain
Brain cancer
Datasets
Discrete cosine transform
Fourier transforms
Image segmentation
K-nearest neighbors algorithm
Lesions
Machine learning
Magnetic resonance imaging
Medical imaging
Morphology
Noise reduction
Supervised learning
Support vector machines
Tumors
Title A multiscale morphological segmentation and classification of brain tumor using supervised learning algorithm
URI http://dx.doi.org/10.1063/5.0189822
https://www.proquest.com/docview/2986397182
Volume 2966
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFIAt6ITgjcsQgw1ZgrcoECfO7bGwTRtqxyRa1LfIduyl2pJWS4IEv57jXJxUm5DGSxRFqRX5c4_POT4XhD66LHakS5idhsKzqauIzShYKYoHgoaRBNtHn-jOL4KzJf228ldD2FiTXVLxT-LPvXkl_0MVngFXnSX7ALJmUHgA98AXrkAYrncZ37vVTM8vdeB4Xyx2eKccr4VpGzdYAg9p5RuYWiPySnmVd-lHbViy0Oq0jh8yuiTXXSSsqoYfWnXjWijrrRYxJSirN71rhd1cbW7XVZYbEa571xdaxrJf64wxa8auyyxfW18Yr615XWW1ce_oqo9VZv1cp9lvNnZEuFRHYrXZ7qPYf1bsRjk0caxi7HcEe9J2adMEGDagTur6xA6DNumyF8tu3LZjGS_AO_IeFCyApCuvRroQ4bCp9Qf5F9-T0-VslixOVovHaM_1wsifoL3p8Xz2wxjmoAO3O3b3aX0FqsD7bIbesUCegnrSkhkpI4vnaH9I08SXhvgL9EgWL9GTbi5eoXyKB-x4BzseY8eAHe9ixxuFG-y4wY4b7HjAjnvs2GDfR8vTk8XXM7vrrmFvSRDpVLmQx15AGFeRZE7sSdDsdT9kh8s41Gp9kCrlxMwh3It8X0ZSKUq5Sh0hiEy912hSbAr5BmGXEI9KX1LBfCqUjEkqwZJ3uC90-4TgAB32c5d0f58yceNIHyqDfXuAPpj5TLZtkZWkCY4IvMRPOgBv_z3IO_RsWJSHaFLd1vII9MWKv-9w_wWwlXW_
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=A+multiscale+morphological+segmentation+and+classification+of+brain+tumor+using+supervised+learning+algorithm&rft.au=Krishnan+Pavihaa+Lakshmi+Babu+Muthu&rft.au=Sampath+Vidhya&rft.date=2024-03-26&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2966&rft.issue=1&rft_id=info:doi/10.1063%2F5.0189822&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon