A multiscale morphological segmentation and classification of brain tumor using supervised learning algorithm
A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level ima...
Saved in:
Published in | AIP conference proceedings Vol. 2966; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Melville
American Institute of Physics
26.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level images of Magnetic resonance imaging (MRI) brain tumor are segmented using K-means Multiscale morphology and the Discrete Cosine Transform (DCT), Pigmentation, orientation, Discrete Fourier Transform (DFT), Lesion margin, lesion intensity, lesion variation features of segmented images are analyzed. Based on the features the input dataset is classified by using KNN algorithm. As a result, the MRI brain tumor is classified into 4 types Glioma tumor, Pituitary tumor, Meningioma tumor, no tumor. The proposed KNN algorithm is compared with support vector machine algorithm and this work eventually proved that the performance of KNN is very good than Support vector machines (SVM) in classifying tumor types. The performance analysis calculated using accuracy, precision, recall, g-mean, sensitivity and specificity. MATLAB R2019b is used as the simulation tool for the analysis. |
---|---|
AbstractList | A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to classify the tumor types. The input dataset is filtered using bilateral filtering by preserving edges and reducing noise. The gray level images of Magnetic resonance imaging (MRI) brain tumor are segmented using K-means Multiscale morphology and the Discrete Cosine Transform (DCT), Pigmentation, orientation, Discrete Fourier Transform (DFT), Lesion margin, lesion intensity, lesion variation features of segmented images are analyzed. Based on the features the input dataset is classified by using KNN algorithm. As a result, the MRI brain tumor is classified into 4 types Glioma tumor, Pituitary tumor, Meningioma tumor, no tumor. The proposed KNN algorithm is compared with support vector machine algorithm and this work eventually proved that the performance of KNN is very good than Support vector machines (SVM) in classifying tumor types. The performance analysis calculated using accuracy, precision, recall, g-mean, sensitivity and specificity. MATLAB R2019b is used as the simulation tool for the analysis. |
Author | Krishnan, Pavihaa Lakshmi Babu Muthu Sampath, Vidhya |
Author_xml | – sequence: 1 givenname: Pavihaa Lakshmi Babu Muthu surname: Krishnan fullname: Krishnan, Pavihaa Lakshmi Babu Muthu email: pavihaalakshmi.b2021@vitstudent.ac.in organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, India – sequence: 2 givenname: Vidhya surname: Sampath fullname: Sampath, Vidhya organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, India |
BookMark | eNotUMtqwzAQFCWFJmkP_QNBbwWneliydAyhLwj00kJvRrZXjoItuZJd6N_XbXJadnZmh5kVWvjgAaFbSjaUSP4gNoQqrRi7QEsqBM0KSeUCLQnRecZy_nmFVikdCWG6KNQS9VvcT93oUm06wH2IwyF0oXXzihO0PfjRjC54bHyD686k5Ox8_IeCxVU0zuNxmoV4Ss63OE0DxG-XoMEdmOj_MNO1Ibrx0F-jS2u6BDfnuUYfT4_vu5ds__b8utvus4FKxbKcF5XmkprKKjBEcxBSFiJnpAJdaM6kbKwl2hBacSUEKLA2zyvbkLqm0PA1ujv9HWL4miCN5TFM0c-WJdNKcl1QxWbW_YmVandKWQ7R9Sb-lJSUf3WWojzXyX8BJyBrRg |
CODEN | APCPCS |
ContentType | Journal Article Conference Proceeding |
Copyright | Author(s) 2024 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published by AIP Publishing. |
DBID | 8FD H8D L7M |
DOI | 10.1063/5.0189822 |
DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1551-7616 |
Editor | B, Jaganatha Pandian Meng, Pang Ming N, Amutha Prabha Gudipalli, Abhishek Vairavasundaram, Indragandhi Vaithilingam, Chockalingam Aravind |
Editor_xml | – sequence: 1 givenname: Abhishek surname: Gudipalli fullname: Gudipalli, Abhishek organization: Vellore Institute of Technology – sequence: 2 givenname: Jaganatha Pandian surname: B fullname: B, Jaganatha Pandian organization: Vellore Institute of Technology – sequence: 3 givenname: Amutha Prabha surname: N fullname: N, Amutha Prabha organization: Vellore Institute of Technology – sequence: 4 givenname: Indragandhi surname: Vairavasundaram fullname: Vairavasundaram, Indragandhi organization: Vellore Institute of Technology – sequence: 5 givenname: Chockalingam Aravind surname: Vaithilingam fullname: Vaithilingam, Chockalingam Aravind organization: Taylor’s University – sequence: 6 givenname: Pang Ming surname: Meng fullname: Meng, Pang Ming organization: Taylor’s University |
ExternalDocumentID | acp |
Genre | Conference Proceeding |
GroupedDBID | -~X 23M 5GY AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACZLF ADCTM AEJMO AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN F5P FDOHQ FFFMQ HAM M71 M73 RIP RQS SJN ~02 8FD ABJGX ADMLS H8D L7M |
ID | FETCH-LOGICAL-p1682-437b9361abf8ea093e56675420be9793266dff09a01b3855e8eff44bfd0cc1ed3 |
ISSN | 0094-243X |
IngestDate | Sun Jun 29 15:53:16 EDT 2025 Fri Jun 21 00:10:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 0094-243X/2024/2966/020019/11/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MeetingName | EMERGING TRENDS IN SIGNAL PROCESSING, INSTRUMENTATION, POWER, CONTROL, AND AUTOMATION SYSTEMS |
MergedId | FETCHMERGED-LOGICAL-p1682-437b9361abf8ea093e56675420be9793266dff09a01b3855e8eff44bfd0cc1ed3 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0189822/19851732/020019_1_5.0189822.pdf |
PQID | 2986397182 |
PQPubID | 2050672 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1063_5_0189822 proquest_journals_2986397182 |
PublicationCentury | 2000 |
PublicationDate | 20240326 |
PublicationDateYYYYMMDD | 2024-03-26 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240326 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP conference proceedings |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Motlak (c11) 2019; 14 Abdelaziz (c9) 2021; 31 Soleymanifard, Hamghalam (c7) 2022; 81 Mzoughi, Njeh, Ben Slima, Ben Hamida, Mhiri, Ben Mahfoudh (c4) 2019; 6 Ayadi (c20) 2022; 38 Leo (c13) 2019; 1362 Saeed (c15) 2022; 81 Srinivas, Rao (c16) 2019; 8 Rao, Srinivas (c5) 2019 Udaka, Packer (c3) 2018; 36 Moorthy, Britto (c8) 2021; 11 KK, MD (c22) 2018; 19 Kaplan (c19) 2020; 139 Nanmaran (c14) 2022; 2022 Ostrom (c1) 2019; 21 Hasan, Ahmad (c6) 2018; 5 Budati, Kumar, Katta (c25) 2022; 24 Sumathi, Venkatesulu (c10) 2021; 1979 Barnholtz-Sloan, Ostrom, Cote (c2) 2018; 36 Khairandish, Omid (c21) 2022; 43 |
References_xml | – volume: 24 start-page: 10570 year: 2022 ident: c25 article-title: An automated brain tumor detection and classification from MRI images using machine learning technique s with IoT publication-title: Environment, Development and Sustainability – volume: 1362 start-page: 012073 year: 2019 ident: c13 article-title: MRI Brain Image Segmentation and Detection Using K-NN Classification publication-title: Journal of Physics: Conference Series – volume: 43 start-page: 290 year: 2022 ident: c21 article-title: A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images publication-title: Irbm – volume: 36 start-page: 395 year: 2018 ident: c2 article-title: Epidemiology of Brain Tumors publication-title: Neurologic Clinics – volume: 6 start-page: 1 year: 2019 ident: c4 article-title: Denoising and contrast-enhancement ap-proach of magnetic resonance imaging glioblastoma brain tumors publication-title: Journal of Medical Imaging – volume: 14 start-page: 3625 year: 2019 ident: c11 article-title: MRI Technique Based Detection and Classification of Brain Tumor using Support Vector Machine (SVM) and k-Nearest Neighbor (kNN publication-title: Journal of Engineering and Applied Sciences – year: 2019 ident: c5 article-title: De-Noising of MRI Brain Tumor Image using Deep Convolutional Neural Network publication-title: SSRN Electronic Journal – volume: 31 start-page: 2226 year: 2021 ident: c9 article-title: Automatic brain tumor segmentation for a computer-aided diagnosis system publication-title: International Journal of Imaging Systems and Technology – volume: 38 start-page: 107 year: 2022 ident: c20 article-title: Brain tumor classification based on hybrid approach publication-title: The Visual Computer – volume: 81 start-page: 18595 year: 2022 ident: c15 article-title: New techniques for efficiently k-NN algorithm for brain tumor detection publication-title: Multimedia Tools and Applications – volume: 139 start-page: 109696 year: 2020 ident: c19 article-title: Brain tumor classification using modified local binary patterns (LBP) feature extraction methods publication-title: Medical hypotheses – volume: 2022 start-page: 1 year: 2022 ident: c14 article-title: Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine publication-title: Computational and Mathematical Methods in Medicine – volume: 81 start-page: 8451 year: 2022 ident: c7 article-title: Multistage glioma segmentation for tumour grade classification based on multiscale fuzzy Cmeans publication-title: Multimedia Tools and Applications – volume: 36 start-page: 533 year: 2018 ident: c3 article-title: Pediatric Brain Tumors publication-title: Neurologic Clinics – volume: 5 year: 2018 ident: c6 article-title: Two-step verification of brain tumor segmentation using watershedmatching algorithm publication-title: Brain Informatics – volume: 1979 start-page: 012047 year: 2021 ident: c10 article-title: An Automated Hybrid Approach for Multimodal Tumor Segmentation publication-title: Journal of Physics: Conference Series – volume: 8 start-page: 2277 year: 2019 ident: c16 article-title: A hybrid CNN-KNN model for MRI brain tumor classification publication-title: International Journal of Recent Tech-nology and Engineering (IJRTE) – volume: 21 start-page: 1357 year: 2019 ident: c1 article-title: Risk factors for childhood and adult primary brain tumors publication-title: Neuro-Oncology – volume: 11 start-page: 3133 year: 2021 ident: c8 article-title: An Efficient Framework for the Segmentation of Glioma Brain Tumor Using Image Fusion and CoActive Adaptive Neuro Fuzzy Inference System Classification Method publication-title: Journal of Medical Imaging and Health Informatics – volume: 19 start-page: 2789 year: 2018 ident: c22 article-title: An Efficient Method for Brain Tumor Detection Using Texture Features and SVM Classifier in MR Images publication-title: Asian Pac J Cancer Prev. |
SSID | ssj0029778 |
Score | 2.36262 |
Snippet | A Brain tumor segmentation and classification method is developed using K-nearest neighbor (KNN), a supervised machine learning algorithm for classification to... |
SourceID | proquest scitation |
SourceType | Aggregation Database Publisher |
SubjectTerms | Algorithms Brain Brain cancer Datasets Discrete cosine transform Fourier transforms Image segmentation K-nearest neighbors algorithm Lesions Machine learning Magnetic resonance imaging Medical imaging Morphology Noise reduction Supervised learning Support vector machines Tumors |
Title | A multiscale morphological segmentation and classification of brain tumor using supervised learning algorithm |
URI | http://dx.doi.org/10.1063/5.0189822 https://www.proquest.com/docview/2986397182 |
Volume | 2966 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFIAt6ITgjcsQgw1ZgrcoECfO7bGwTRtqxyRa1LfIduyl2pJWS4IEv57jXJxUm5DGSxRFqRX5c4_POT4XhD66LHakS5idhsKzqauIzShYKYoHgoaRBNtHn-jOL4KzJf228ldD2FiTXVLxT-LPvXkl_0MVngFXnSX7ALJmUHgA98AXrkAYrncZ37vVTM8vdeB4Xyx2eKccr4VpGzdYAg9p5RuYWiPySnmVd-lHbViy0Oq0jh8yuiTXXSSsqoYfWnXjWijrrRYxJSirN71rhd1cbW7XVZYbEa571xdaxrJf64wxa8auyyxfW18Yr615XWW1ce_oqo9VZv1cp9lvNnZEuFRHYrXZ7qPYf1bsRjk0caxi7HcEe9J2adMEGDagTur6xA6DNumyF8tu3LZjGS_AO_IeFCyApCuvRroQ4bCp9Qf5F9-T0-VslixOVovHaM_1wsifoL3p8Xz2wxjmoAO3O3b3aX0FqsD7bIbesUCegnrSkhkpI4vnaH9I08SXhvgL9EgWL9GTbi5eoXyKB-x4BzseY8eAHe9ixxuFG-y4wY4b7HjAjnvs2GDfR8vTk8XXM7vrrmFvSRDpVLmQx15AGFeRZE7sSdDsdT9kh8s41Gp9kCrlxMwh3It8X0ZSKUq5Sh0hiEy912hSbAr5BmGXEI9KX1LBfCqUjEkqwZJ3uC90-4TgAB32c5d0f58yceNIHyqDfXuAPpj5TLZtkZWkCY4IvMRPOgBv_z3IO_RsWJSHaFLd1vII9MWKv-9w_wWwlXW_ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=A+multiscale+morphological+segmentation+and+classification+of+brain+tumor+using+supervised+learning+algorithm&rft.au=Krishnan+Pavihaa+Lakshmi+Babu+Muthu&rft.au=Sampath+Vidhya&rft.date=2024-03-26&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2966&rft.issue=1&rft_id=info:doi/10.1063%2F5.0189822&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon |