Target inactivation analysis applied to determination of molecular weights of rat liver proteins in the purified state and in microsomal membranes

In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, e...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 915; no. 2; pp. 246 - 253
Main Authors GUENGERICH, F. P, CHURCHILL, P. F, JUNG, C. Y, FLEISCHER, S
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 24.09.1987
North-Holland
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3002
1878-2434