Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs

Pathologies like autism and schizophrenia are a broad set of disorders with multiple etiologies in the same diagnostic category. This paper presents a method for unsupervised cluster analysis using multi-edge similarity graphs that combine information from different modalities. The method alleviates...

Full description

Saved in:
Bibliographic Details
Published inMedical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention Vol. 15; no. Pt 2; p. 254
Main Authors Ingalhalikar, Madhura, Smith, Alex R, Bloy, Luke, Gur, Ruben, Roberts, Timothy P L, Verma, Ragini
Format Journal Article
LanguageEnglish
Published Germany 2012
Subjects
Online AccessGet more information

Cover

Abstract Pathologies like autism and schizophrenia are a broad set of disorders with multiple etiologies in the same diagnostic category. This paper presents a method for unsupervised cluster analysis using multi-edge similarity graphs that combine information from different modalities. The method alleviates the issues with traditional supervised classification methods that use diagnostic labels and are therefore unable to exploit or elucidate the underlying heterogeneity of the dataset under analysis. The framework introduced in this paper has the ability to employ diverse features that define different aspects of pathology obtained from different modalities to create a multi-edged graph on which clustering is performed. The weights on the multiple edges are optimized using a novel concept of 'holding power' that describes the certainty with which a subject belongs to a cluster. We apply the technique to two separate clinical populations of autism spectrum disorder (ASD) and schizophrenia (SCZ), where the multi-edged graph for each population is created by combining information from structural networks and cognitive scores. For the ASD-control population the method clusters the data into two classes and the SCZ-control population is clustered into four. The two classes in ASD agree with underlying diagnostic labels with 92% accuracy and the SCZ clustering agrees with 78% accuracy, indicating a greater heterogeneity in the SCZ population.
AbstractList Pathologies like autism and schizophrenia are a broad set of disorders with multiple etiologies in the same diagnostic category. This paper presents a method for unsupervised cluster analysis using multi-edge similarity graphs that combine information from different modalities. The method alleviates the issues with traditional supervised classification methods that use diagnostic labels and are therefore unable to exploit or elucidate the underlying heterogeneity of the dataset under analysis. The framework introduced in this paper has the ability to employ diverse features that define different aspects of pathology obtained from different modalities to create a multi-edged graph on which clustering is performed. The weights on the multiple edges are optimized using a novel concept of 'holding power' that describes the certainty with which a subject belongs to a cluster. We apply the technique to two separate clinical populations of autism spectrum disorder (ASD) and schizophrenia (SCZ), where the multi-edged graph for each population is created by combining information from structural networks and cognitive scores. For the ASD-control population the method clusters the data into two classes and the SCZ-control population is clustered into four. The two classes in ASD agree with underlying diagnostic labels with 92% accuracy and the SCZ clustering agrees with 78% accuracy, indicating a greater heterogeneity in the SCZ population.
Author Smith, Alex R
Ingalhalikar, Madhura
Gur, Ruben
Verma, Ragini
Bloy, Luke
Roberts, Timothy P L
Author_xml – sequence: 1
  givenname: Madhura
  surname: Ingalhalikar
  fullname: Ingalhalikar, Madhura
  email: Madhura.Ingalhalikar@uphs.upenn.edu
  organization: Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA. Madhura.Ingalhalikar@uphs.upenn.edu
– sequence: 2
  givenname: Alex R
  surname: Smith
  fullname: Smith, Alex R
– sequence: 3
  givenname: Luke
  surname: Bloy
  fullname: Bloy, Luke
– sequence: 4
  givenname: Ruben
  surname: Gur
  fullname: Gur, Ruben
– sequence: 5
  givenname: Timothy P L
  surname: Roberts
  fullname: Roberts, Timothy P L
– sequence: 6
  givenname: Ragini
  surname: Verma
  fullname: Verma, Ragini
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23286056$$D View this record in MEDLINE/PubMed
BookMark eNo1z8tKxDAUgOEslFFnfAXJCxTadJLGpQxeBgbc6FKGk-S0HkjTkMtA396Fuvp3H_x37CosATfsRvRCq1aqW_Z1dBgKjSuFiedqmrjE6qHQEjK_EPAaco2YLpTRcetrLpg4BPBrpsyXwOfqCzXoJuSZZvKQqKx8ShC_845dj-Az3v91yz5fnj8Ob83p_fV4eDo1sVN9aVyvndVoNZhemcdulFaBbTtQ2gglB4Sx062WPRoQ0Erb7vc4OjMoJ7XTg9iyh183VjOjO8dEM6T1_P8pfgCzv05Y
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 23286056
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC008871
– fundername: NIMH NIH HHS
  grantid: MH079938
– fundername: NIMH NIH HHS
  grantid: MH092862
– fundername: NIMH NIH HHS
  grantid: R01 MH079938
– fundername: NIDCD NIH HHS
  grantid: R01 DC008871
– fundername: NIMH NIH HHS
  grantid: R01 MH092862
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-p163t-d38dc8ec8ab36b91f5c6ac01a68b2657eaf180853eba2a05c044efdb76d58d872
IngestDate Fri Sep 17 19:43:15 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p163t-d38dc8ec8ab36b91f5c6ac01a68b2657eaf180853eba2a05c044efdb76d58d872
PMID 23286056
ParticipantIDs pubmed_primary_23286056
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
PublicationTitleAlternate Med Image Comput Comput Assist Interv
PublicationYear 2012
Score 1.8721893
Snippet Pathologies like autism and schizophrenia are a broad set of disorders with multiple etiologies in the same diagnostic category. This paper presents a method...
SourceID pubmed
SourceType Index Database
StartPage 254
SubjectTerms Adolescent
Algorithms
Artificial Intelligence
Brain - pathology
Child
Child Development Disorders, Pervasive - pathology
Child, Preschool
Connectome - methods
Diffusion Magnetic Resonance Imaging - methods
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Infant
Nerve Net - pathology
Pattern Recognition, Automated - methods
Reproducibility of Results
Schizophrenia - pathology
Sensitivity and Specificity
Young Adult
Title Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs
URI https://www.ncbi.nlm.nih.gov/pubmed/23286056
Volume 15
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBab9tJLSen7hQ69GS2WvbK0x2Vpmy1NyCGBXEqQZJksyTqmXvWQ39gf1ZFkedWlpY-LMRJ4jOaz9M14Hgi9m4NaC2Zy0jBdgoHCSyKoZoTyEtAw56xqfIDsSXV0Pvt0wS4mk-9J1JLdqqm--2Veyf9oFcZAry5L9h80Oz4UBuAe9AtX0DBc_0rHIcs2ZCr1VpFu7MbVZ9_WMrNtbzu3GfRAK_WNdUURMjmWIWlDOCFxLrWsX2_WYOU6Uu6LWPcpbY2_c9YbF-KjfSeImN2oh74QBGi4w0ztS1CMcZTO5QCqXi5W2XQ63fNA7vIN3dtEKSsvZfmTlNh9giyilFUiZQR4CwfeFZgW1yFu_FjWV_brePKMbiSX1pOESt4Eh-Rnez3C_KMNgedWDblyg2fEh5hEz0jc2lkC4dNtVqRbdShencCk23icAMcUYORVf57dq9Qdpw7QAefukDg5PXbFpofhPcPFE5izQ_RwsDzwIsDoEZqY9jH6kkAI70EIA4RwCiE8QAhHCOHbFu8ghHcQwgFCT9D5h_dnyyMydNwgHfDyLalLUWthtJCqrNScwgdcSZ1TWQlVVIwb2VABJL00ShYyZzqfzUxTK17VTNSCF0_Rvfa2Nc8RNlSXdZErQamamVLBjkAVkFHjfgwXc_4CPQurcdmFsiqXcZ1e_nbmFXqw0_NrdL-B79i8AVK4VW_9av8AkIpyKw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+sub-populations+via+unsupervised+cluster+analysis+on+multi-edge+similarity+graphs&rft.jtitle=Medical+image+computing+and+computer-assisted+intervention+%3A+MICCAI+...+International+Conference+on+Medical+Image+Computing+and+Computer-Assisted+Intervention&rft.au=Ingalhalikar%2C+Madhura&rft.au=Smith%2C+Alex+R&rft.au=Bloy%2C+Luke&rft.au=Gur%2C+Ruben&rft.date=2012-01-01&rft.volume=15&rft.issue=Pt+2&rft.spage=254&rft_id=info%3Apmid%2F23286056&rft_id=info%3Apmid%2F23286056&rft.externalDocID=23286056