Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction
Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of t...
Saved in:
Published in | Journal of applied crystallography Vol. 54; no. 5; pp. 1409 - 1415 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.10.2021
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1600-5767 0021-8898 1600-5767 |
DOI | 10.1107/S1600576721008700 |
Cover
Loading…
Abstract | Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized.
The structure dynamics in Li3PO4 crystals are investigated using temperature‐dependent neutron powder diffraction, which shows that the anisotropic displacement parameters, nuclear density distribution and bond valence map are subject to change with temperature. This information is useful for the study of lithium‐ion diffusion in the crystal structure of a cathode or solid electrolyte for lithium‐ion batteries. |
---|---|
AbstractList | Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized.
The structure dynamics in Li3PO4 crystals are investigated using temperature‐dependent neutron powder diffraction, which shows that the anisotropic displacement parameters, nuclear density distribution and bond valence map are subject to change with temperature. This information is useful for the study of lithium‐ion diffusion in the crystal structure of a cathode or solid electrolyte for lithium‐ion batteries. Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized. |
Author | Avdeev, Maxim Manawan, Maykel Kartini, Evvy |
Author_xml | – sequence: 1 givenname: Maykel surname: Manawan fullname: Manawan, Maykel email: maykeltem@gmail.com organization: Universitas Pertahanan Indonesia – sequence: 2 givenname: Evvy surname: Kartini fullname: Kartini, Evvy email: evvy.kartini@gmail.com organization: National Battery Research Institute – sequence: 3 givenname: Maxim surname: Avdeev fullname: Avdeev, Maxim organization: Australian Nuclear Science and Technology Organisation |
BookMark | eNplkEtLAzEcxINUsK1-AG8Bz9V_kt1N9qjFJ4WKjx68LGk2sSnbbM0DWT-9u-hB8DTD8GMGZoJGrnUaoVMC54QAv3gmBUDOC04JgOAAB2g8RLMhG_3xR2gSwhaA9Cgdo7eVDUk29su6d9zYuLFph23rArYOx43GynchygaH6JOKyWvcGryw7HGZ4XU3UMHGhJ1O0bcO19YYL1XsK47RoZFN0Ce_OkWvN9cv87vZYnl7P79czPakYGKWgVLAQddAaGHqjPdSi2JNdKnWRtCMZtIAE5IrAYoVTHKgoqRcmJqSPGNTdPbTu_ftR9IhVts2eddPVjTnJWSMMNFT5Q_1aRvdVXtvd9J3FYFq-K_691_1MH-iq6sciGDfmbBl7g |
ContentType | Journal Article |
Copyright | 2021 Maykel Manawan et al. published by IUCr Journals. Copyright Blackwell Publishing Ltd. Oct 2021 |
Copyright_xml | – notice: 2021 Maykel Manawan et al. published by IUCr Journals. – notice: Copyright Blackwell Publishing Ltd. Oct 2021 |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1107/S1600576721008700 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1600-5767 |
EndPage | 1415 |
ExternalDocumentID | JCR2VB5018 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 1Y6 29J 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ H~9 I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCJ RIWAO RJQFR RNS ROL RX1 SUPJJ TN5 UB1 UPT V8K VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WYISQ XG1 YCJ YQT ZCG ZZTAW ~02 ~IA ~WT 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p1638-40cc070ed0126fd47126d86b1e9cbf82424af038a7c80c363a70289278fd21543 |
IEDL.DBID | DR2 |
ISSN | 1600-5767 0021-8898 |
IngestDate | Wed Aug 13 07:21:07 EDT 2025 Wed Jan 22 16:29:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1638-40cc070ed0126fd47126d86b1e9cbf82424af038a7c80c363a70289278fd21543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2579043138 |
PQPubID | 29562 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2579043138 wiley_primary_10_1107_S1600576721008700_JCR2VB5018 |
PublicationCentury | 2000 |
PublicationDate | October 2021 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: Oxford |
PublicationTitle | Journal of applied crystallography |
PublicationYear | 2021 |
Publisher | International Union of Crystallography Blackwell Publishing Ltd |
Publisher_xml | – name: International Union of Crystallography – name: Blackwell Publishing Ltd |
SSID | ssj0016722 |
Score | 2.376614 |
Snippet | Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1409 |
SubjectTerms | anisotropic displacement parameters Anisotropy bond valence sum Crystal structure Density distribution Ion currents Ion diffusion Lithium Lithium ions Mapping maximum entropy method Molten salt electrolytes Neutron diffraction Neutron scattering Neutrons nuclear density distribution Rietveld analysis Rietveld method Solid electrolytes |
Title | Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576721008700 https://www.proquest.com/docview/2579043138 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QLurBB2pE0ezBa7HtLkt71EZCiK-gEOKl2Wds1EKAHuDXu9MWg3LTY5Pppt3HzDc7M98gdBkSzVuuNg4XTDmUc-MIa4kcQSm0gAtJ6EHt8P0D6w5ob9QaVVC0qoUp-CG-L9zgZOT6Gg44F2UXkjyu_-wxqKRk1oUBXjUX_HbI2QJg1P-mkPJYQYYIwg5Il5FNO8bVxgg_UOY6Vs2NTWcPqdVnFjkm781sLppy-YvB8Z__sY92SzCKr4vdc4AqOq2hrWjVA66GdtboCg_R6zCZQQ3m0j5hC9_fkuwTw7bFSYotkMRyurBg8wMXpLTZVOOxwXcJeXqkWCxAapbMM5zqDC7gMTRnmRaFFUdo0Ll9ibpO2ZvBmQCCs26nlFZbaGUNHDPKmjifqYAJT4dSmACKTrhxScDbMnAlYYS3IabptwOjLMqg5BhV03GqTxBWrpI0JCoQRlPpK8EFNcTzmFCC8papo8ZqVeLygM1iq2lC4AUiQR35-fTGk4KeI87dGrcdb0xs3Iv6_vAGKAxP__LSGdr2IaMlT-VroKqdS31uIclcXOR77gvTzdVL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAwOPAaIx4AcuBbaJsvaIwzQgPEQLyEuVZ6iArppWw_s1xO3GwJ2g2MlN2qTOP7s2J8B9mJqRMM31hOSa48JYT3pLJEnGcMWcDGNA6wdvrzi7Qd2_tR4moHjSS1MyQ_xFXBDzSjOa1RwDEiXWl5c7N8FHEspufNhkFjNd477LHb2RvU8vv0ikQp4SYeI0h6Kj-823SAHU0P8wJnf0Wphbk4XwUw-tMwyed3Ph3JfjX5xOP73T5ZgYYxHyWG5gZZhxmQ1qLYmbeBqMP-NsXAFnh_TAZZhjtwTcQj-Jc3fCe5ckmbEYUmi-h8Ob76Rkpc27xvStaST0ptrRuQHSg3SYU4yk2MMnmB_ln5ZW7EKD6cn9622N27P4PUQxDnPUyl3YBjtbBy32lm5kOuIy8DEStoI606E9WkkmiryFeVUNPFaM2xGVjugwegaVLJuZtaBaF8rFlMdSWuYCrUUklkaBFxqyUTDbkB9sizJWMcGiTtsYqQGotEGhMX8Jr2SoSMpPBu_mUxNbHLeug0fj5DFcPMvL-1CtX1_2Uk6Z1cXWzAXYoJLkdlXh4qbV7PtEMpQ7hQb8BNDOtlk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-NADLYQSOxy4LWLKBSYA9ewSWY6TY5QqHiD2AWhvUTzFBEQqrY50F-PnbSIxw1uieSMksnY_jwefwbYTrlTrdD5QGlpA6GUDzR6okALQS3gUp5GVDt8di4Pr8Xxbet2CjqTWpiaH-J1w400o7LXpOA962slr_L6fyNJlZQSQxjiVQsxbp8REq8IGV29ckhFsmZDJOmAxMepTRzkz6ch3sHMt2C18jbdBbCT96wPmdzvlEO9Y0YfKBy_-SGLMD9Go2y3Xj5LMOWKZfjRmTSBW4a5N3yFv-D_TT6gIswR3jHE73d5-cho3bK8YIgkmek_I9p8YDUrbdl37Mmz05xfXgimn0lqkA9LVriSduAZdWfp15UVv-G6e_CvcxiMmzMEPYJwGHcag-bCWfRw0lv0cbG0idSRS432CVWdKB_yRLVNEhouuWpTUjNuJ94izBB8BaaLp8KtArOhNSLlNtHeCRNbrbTwPIqktlqolm9Ac_JXsrGGDTI0NSkRA_GkAXE1vVmv5ufIqrgmbGefJjY77lzFN3vEYbj2lYe2YPZyv5udHp2frMPPmE63VMf6mjCN0-o2EJ4M9Wa1_F4A4efYHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+lithium+ions+in+the+crystal+structure+of+Li3PO4+by+in+situ+neutron+diffraction&rft.jtitle=Journal+of+applied+crystallography&rft.au=Maykel+Manawan&rft.au=Evvy+Kartini&rft.au=Avdeev%2C+Maxim&rft.date=2021-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8898&rft.eissn=1600-5767&rft.volume=54&rft.issue=5&rft.spage=1409&rft.epage=1415&rft_id=info:doi/10.1107%2FS1600576721008700&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon |