Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction

Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied crystallography Vol. 54; no. 5; pp. 1409 - 1415
Main Authors Manawan, Maykel, Kartini, Evvy, Avdeev, Maxim
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.10.2021
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1600-5767
0021-8898
1600-5767
DOI10.1107/S1600576721008700

Cover

Loading…
Abstract Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized. The structure dynamics in Li3PO4 crystals are investigated using temperature‐dependent neutron powder diffraction, which shows that the anisotropic displacement parameters, nuclear density distribution and bond valence map are subject to change with temperature. This information is useful for the study of lithium‐ion diffusion in the crystal structure of a cathode or solid electrolyte for lithium‐ion batteries.
AbstractList Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized. The structure dynamics in Li3PO4 crystals are investigated using temperature‐dependent neutron powder diffraction, which shows that the anisotropic displacement parameters, nuclear density distribution and bond valence map are subject to change with temperature. This information is useful for the study of lithium‐ion diffusion in the crystal structure of a cathode or solid electrolyte for lithium‐ion batteries.
Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high‐resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium‐ion diffusion in the crystal structure can be visualized.
Author Avdeev, Maxim
Manawan, Maykel
Kartini, Evvy
Author_xml – sequence: 1
  givenname: Maykel
  surname: Manawan
  fullname: Manawan, Maykel
  email: maykeltem@gmail.com
  organization: Universitas Pertahanan Indonesia
– sequence: 2
  givenname: Evvy
  surname: Kartini
  fullname: Kartini, Evvy
  email: evvy.kartini@gmail.com
  organization: National Battery Research Institute
– sequence: 3
  givenname: Maxim
  surname: Avdeev
  fullname: Avdeev, Maxim
  organization: Australian Nuclear Science and Technology Organisation
BookMark eNplkEtLAzEcxINUsK1-AG8Bz9V_kt1N9qjFJ4WKjx68LGk2sSnbbM0DWT-9u-hB8DTD8GMGZoJGrnUaoVMC54QAv3gmBUDOC04JgOAAB2g8RLMhG_3xR2gSwhaA9Cgdo7eVDUk29su6d9zYuLFph23rArYOx43GynchygaH6JOKyWvcGryw7HGZ4XU3UMHGhJ1O0bcO19YYL1XsK47RoZFN0Ce_OkWvN9cv87vZYnl7P79czPakYGKWgVLAQddAaGHqjPdSi2JNdKnWRtCMZtIAE5IrAYoVTHKgoqRcmJqSPGNTdPbTu_ftR9IhVts2eddPVjTnJWSMMNFT5Q_1aRvdVXtvd9J3FYFq-K_691_1MH-iq6sciGDfmbBl7g
ContentType Journal Article
Copyright 2021 Maykel Manawan et al. published by IUCr Journals.
Copyright Blackwell Publishing Ltd. Oct 2021
Copyright_xml – notice: 2021 Maykel Manawan et al. published by IUCr Journals.
– notice: Copyright Blackwell Publishing Ltd. Oct 2021
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1107/S1600576721008700
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1600-5767
EndPage 1415
ExternalDocumentID JCR2VB5018
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
1Y6
29J
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCJ
RIWAO
RJQFR
RNS
ROL
RX1
SUPJJ
TN5
UB1
UPT
V8K
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XG1
YCJ
YQT
ZCG
ZZTAW
~02
~IA
~WT
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p1638-40cc070ed0126fd47126d86b1e9cbf82424af038a7c80c363a70289278fd21543
IEDL.DBID DR2
ISSN 1600-5767
0021-8898
IngestDate Wed Aug 13 07:21:07 EDT 2025
Wed Jan 22 16:29:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1638-40cc070ed0126fd47126d86b1e9cbf82424af038a7c80c363a70289278fd21543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2579043138
PQPubID 29562
PageCount 7
ParticipantIDs proquest_journals_2579043138
wiley_primary_10_1107_S1600576721008700_JCR2VB5018
PublicationCentury 2000
PublicationDate October 2021
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: Oxford
PublicationTitle Journal of applied crystallography
PublicationYear 2021
Publisher International Union of Crystallography
Blackwell Publishing Ltd
Publisher_xml – name: International Union of Crystallography
– name: Blackwell Publishing Ltd
SSID ssj0016722
Score 2.376614
Snippet Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all‐solid batteries. Understanding the crystal...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 1409
SubjectTerms anisotropic displacement parameters
Anisotropy
bond valence sum
Crystal structure
Density distribution
Ion currents
Ion diffusion
Lithium
Lithium ions
Mapping
maximum entropy method
Molten salt electrolytes
Neutron diffraction
Neutron scattering
Neutrons
nuclear density distribution
Rietveld analysis
Rietveld method
Solid electrolytes
Title Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600576721008700
https://www.proquest.com/docview/2579043138
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QLurBB2pE0ezBa7HtLkt71EZCiK-gEOKl2Wds1EKAHuDXu9MWg3LTY5Pppt3HzDc7M98gdBkSzVuuNg4XTDmUc-MIa4kcQSm0gAtJ6EHt8P0D6w5ob9QaVVC0qoUp-CG-L9zgZOT6Gg44F2UXkjyu_-wxqKRk1oUBXjUX_HbI2QJg1P-mkPJYQYYIwg5Il5FNO8bVxgg_UOY6Vs2NTWcPqdVnFjkm781sLppy-YvB8Z__sY92SzCKr4vdc4AqOq2hrWjVA66GdtboCg_R6zCZQQ3m0j5hC9_fkuwTw7bFSYotkMRyurBg8wMXpLTZVOOxwXcJeXqkWCxAapbMM5zqDC7gMTRnmRaFFUdo0Ll9ibpO2ZvBmQCCs26nlFZbaGUNHDPKmjifqYAJT4dSmACKTrhxScDbMnAlYYS3IabptwOjLMqg5BhV03GqTxBWrpI0JCoQRlPpK8EFNcTzmFCC8papo8ZqVeLygM1iq2lC4AUiQR35-fTGk4KeI87dGrcdb0xs3Iv6_vAGKAxP__LSGdr2IaMlT-VroKqdS31uIclcXOR77gvTzdVL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAwOPAaIx4AcuBbaJsvaIwzQgPEQLyEuVZ6iArppWw_s1xO3GwJ2g2MlN2qTOP7s2J8B9mJqRMM31hOSa48JYT3pLJEnGcMWcDGNA6wdvrzi7Qd2_tR4moHjSS1MyQ_xFXBDzSjOa1RwDEiXWl5c7N8FHEspufNhkFjNd477LHb2RvU8vv0ikQp4SYeI0h6Kj-823SAHU0P8wJnf0Wphbk4XwUw-tMwyed3Ph3JfjX5xOP73T5ZgYYxHyWG5gZZhxmQ1qLYmbeBqMP-NsXAFnh_TAZZhjtwTcQj-Jc3fCe5ckmbEYUmi-h8Ob76Rkpc27xvStaST0ptrRuQHSg3SYU4yk2MMnmB_ln5ZW7EKD6cn9622N27P4PUQxDnPUyl3YBjtbBy32lm5kOuIy8DEStoI606E9WkkmiryFeVUNPFaM2xGVjugwegaVLJuZtaBaF8rFlMdSWuYCrUUklkaBFxqyUTDbkB9sizJWMcGiTtsYqQGotEGhMX8Jr2SoSMpPBu_mUxNbHLeug0fj5DFcPMvL-1CtX1_2Uk6Z1cXWzAXYoJLkdlXh4qbV7PtEMpQ7hQb8BNDOtlk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-NADLYQSOxy4LWLKBSYA9ewSWY6TY5QqHiD2AWhvUTzFBEQqrY50F-PnbSIxw1uieSMksnY_jwefwbYTrlTrdD5QGlpA6GUDzR6okALQS3gUp5GVDt8di4Pr8Xxbet2CjqTWpiaH-J1w400o7LXpOA962slr_L6fyNJlZQSQxjiVQsxbp8REq8IGV29ckhFsmZDJOmAxMepTRzkz6ch3sHMt2C18jbdBbCT96wPmdzvlEO9Y0YfKBy_-SGLMD9Go2y3Xj5LMOWKZfjRmTSBW4a5N3yFv-D_TT6gIswR3jHE73d5-cho3bK8YIgkmek_I9p8YDUrbdl37Mmz05xfXgimn0lqkA9LVriSduAZdWfp15UVv-G6e_CvcxiMmzMEPYJwGHcag-bCWfRw0lv0cbG0idSRS432CVWdKB_yRLVNEhouuWpTUjNuJ94izBB8BaaLp8KtArOhNSLlNtHeCRNbrbTwPIqktlqolm9Ac_JXsrGGDTI0NSkRA_GkAXE1vVmv5ufIqrgmbGefJjY77lzFN3vEYbj2lYe2YPZyv5udHp2frMPPmE63VMf6mjCN0-o2EJ4M9Wa1_F4A4efYHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+lithium+ions+in+the+crystal+structure+of+Li3PO4+by+in+situ+neutron+diffraction&rft.jtitle=Journal+of+applied+crystallography&rft.au=Maykel+Manawan&rft.au=Evvy+Kartini&rft.au=Avdeev%2C+Maxim&rft.date=2021-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8898&rft.eissn=1600-5767&rft.volume=54&rft.issue=5&rft.spage=1409&rft.epage=1415&rft_id=info:doi/10.1107%2FS1600576721008700&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5767&client=summon