An Aqueous Mg2+‐Based Dual‐Ion Battery with High Power Density
Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as ins...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 50 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries.
An aqueous Mg2+ dual‐ion battery is proposed to show high power density and remarkable cycling stability. This battery chemistry relies on the concentrated electrolytes of Mg(NO3)2 featuring water‐shared ion pairs. This suppresses not only water activity but also enables a high rate and stable polyaniline cathode and polyimide anode. |
---|---|
AbstractList | Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries.
An aqueous Mg2+ dual‐ion battery is proposed to show high power density and remarkable cycling stability. This battery chemistry relies on the concentrated electrolytes of Mg(NO3)2 featuring water‐shared ion pairs. This suppresses not only water activity but also enables a high rate and stable polyaniline cathode and polyimide anode. Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries. |
Author | Mohammed, Omar F. Emwas, Abdul‐Hamid Alshareef, Husam N. Yin, Jun Zhu, Yunpei |
Author_xml | – sequence: 1 givenname: Yunpei surname: Zhu fullname: Zhu, Yunpei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Jun surname: Yin fullname: Yin, Jun organization: Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Abdul‐Hamid surname: Emwas fullname: Emwas, Abdul‐Hamid organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Omar F. surname: Mohammed fullname: Mohammed, Omar F. organization: Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNo9kEFPwkAQhTcGEwG9et7EoynO7ra79FhAhASiB028bZbtFEqgxW4b0ps_wd_oL3EJhtPMS15m3vt6pFOUBRJyz2DAAPiTSbP9gANnoCIurkiXSSYDAXzYuezs84b0nNsCMKVE2CWjpKDJV4Nl4-hyzR9_v39GxmFKJ43ZeTEvCzoydY1VS495vaGzfL2hb-URKzrBwuV1e0uuM7NzePc_--Rj-vw-ngWL15f5OFkEByaFCEKEOBuCkWG0MtbIFRouMilDCbFNlbLcB7KhQhXaFTcGJEYZtyLNgKsIreiTh_PdQ1X6xK7W27KpCv9Sc-k7D2Nf3rvis-uY77DVhyrfm6rVDPQJkj5B0hdIOplMlxcl_gCHPV9Z |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202107523 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202107523 |
Genre | article |
GrantInformation_xml | – fundername: KAUST |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p1633-4e09f80a645baca6bea23f664609cd77c2734c47e74cb2aa06e5f2c3df0275ec3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:37:50 EDT 2025 Wed Jan 22 16:28:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1633-4e09f80a645baca6bea23f664609cd77c2734c47e74cb2aa06e5f2c3df0275ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5029-2142 |
PQID | 2607589202 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2607589202 wiley_primary_10_1002_adfm_202107523_ADFM202107523 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1989; 85 2017; 1 2017; 2 2017; 3 2010; 107 2002; 110 2019; 322 2020; 14 2009; 113 2020; 13 2021; 482 2020; 10 2019; 569 2001; 503 2011; 111 2020; 19 2018; 9 2020; 5 2020; 4 2013; 15 2018; 2 2018; 4 2014; 2 2019; 20 2019; 22 1995; 69 2010; 114 2020; 49 2005; 109 2021; 81 2021; 6 2018; 28 2019; 4 2019; 3 2009; 21 2020; 383 2015; 520 2017; 23 2009 2008; 10 2020; 422 2020; 32 2019; 141 1987; 18 2015; 25 2016; 7 2016; 1 2021; 12 2020; 30 2000; 147 2020; 25 2018; 51 2018; 12 2018; 11 2018; 10 2012; 5 2018; 57 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 6 start-page: 109 year: 2021 publication-title: Nat. Rev. Mater. – volume: 141 start-page: 2305 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 127 year: 2020 publication-title: Nat. Rev. Chem. – volume: 1 start-page: 739 year: 2017 publication-title: Joule – volume: 110 start-page: 229 year: 2002 publication-title: J. Power Sources – volume: 569 start-page: 245 year: 2019 publication-title: Nature – volume: 15 start-page: 9654 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 4 start-page: 495 year: 2019 publication-title: Nat. Energy – volume: 322 start-page: 487 year: 2019 publication-title: J. Radioanal. Nucl. Chem. – volume: 7 start-page: 1736 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 422 year: 2020 publication-title: Coord. Chem. Rev. – volume: 49 start-page: 3565 year: 2020 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 34 year: 2020 publication-title: Energy Storage Mater. – volume: 114 start-page: 5141 year: 2010 publication-title: J. Phys. Chem. A – volume: 2 start-page: 1115 year: 2017 publication-title: ACS Energy Lett. – volume: 113 start-page: 8795 year: 2009 publication-title: J. Phys. Chem. A – volume: 5 start-page: 646 year: 2020 publication-title: Nat. Energy – volume: 5 start-page: 1043 year: 2020 publication-title: Nat. Energy – volume: 482 year: 2021 publication-title: J. Power Sources – volume: 18 start-page: 311 year: 1987 publication-title: Synth. Met. – volume: 2 start-page: 1690 year: 2018 publication-title: Joule – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 12 start-page: 3424 year: 2018 publication-title: ACS Nano – volume: 3 start-page: 27 year: 2019 publication-title: Joule – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 4642 year: 2014 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1557 year: 2020 publication-title: Joule – volume: 5 start-page: 605 year: 2020 publication-title: Nat. Energy – volume: 69 start-page: 85 year: 1995 publication-title: Synth. Met. – volume: 51 start-page: 258 year: 2018 publication-title: Acc. Chem. Res. – volume: 109 year: 2005 publication-title: J. Phys. Chem. B – volume: 25 start-page: 1 year: 2020 publication-title: Energy Storage Mater. – volume: 503 start-page: 105 year: 2001 publication-title: J. Electroanal. Chem. – volume: 4 start-page: 564 year: 2018 publication-title: Chem – start-page: 836 year: 2009 publication-title: Chem. Commun. – volume: 147 start-page: 899 year: 2000 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 218 year: 2019 publication-title: Energy Storage Mater. – volume: 11 start-page: 2876 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 3 start-page: 1121 year: 2017 publication-title: ACS Cent. Sci. – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 23 start-page: 2560 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 2 start-page: 581 year: 2014 publication-title: J. Mater. Chem. A – volume: 20 start-page: 253 year: 2019 publication-title: Energy Storage Mater. – volume: 25 start-page: 6519 year: 2015 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4793 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 782 year: 2019 publication-title: Joule – volume: 14 start-page: 1102 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 3950 year: 2020 publication-title: Energy Environ. Sci. – volume: 9 start-page: 4469 year: 2018 publication-title: Nat. Commun. – volume: 107 start-page: 6616 year: 2010 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 532 year: 2018 publication-title: Nat. Chem. – volume: 141 start-page: 6338 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 520 start-page: 324 year: 2015 publication-title: Nature – volume: 21 start-page: 280 year: 2009 publication-title: Chem. Mater. – volume: 5 start-page: 9726 year: 2012 publication-title: Energy Environ. Sci. – volume: 85 start-page: 969 year: 1989 publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 19 start-page: 1151 year: 2020 publication-title: Nat. Mater. – volume: 111 start-page: 435 year: 2011 publication-title: Int. J. Quantum Chem. |
SSID | ssj0017734 |
Score | 2.560337 |
Snippet | Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Alternative energy sources Anodes Aqueous electrolytes Cathodes Diffusion rate Electrode materials Electrode polarization Electrolytes energy storage mechanism high power high stability ion pairs Lithium Lithium-ion batteries Materials science Polyanilines Rechargeable batteries Redox reactions Stability Strong interactions (field theory) |
Title | An Aqueous Mg2+‐Based Dual‐Ion Battery with High Power Density |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107523 https://www.proquest.com/docview/2607589202 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQWWDgG1EolQc2lDZxHJuMKaEqiCAEVOoW2Y7DAEormgxl4ifwG_kl-JI2tIywxYMl--LzvbPfPSN0BndBvrK1RVM_sah2qCVJQi2mhG1L1zURAQqFozs2GNKbkTdaquKv9CHqAzfwjHK_BgcXctr9EQ0VSQqV5CZl4SaZMpswELYAFT3U-lEO59W1MnOA4OWMFqqNNumudl_Bl8sotQwz_W0kFgOs2CUvnSKXHfX-S7vxPzPYQVtzDIqDatHsojWd7aHNJWXCfdQLMhyYgY6LKY6eyfnXx2fPxLsEh4V4NY3rcYYrac4ZhqNcDHwRfA9PruEQOPH57AAN-1dPlwNr_tyCNTGgzDU_yvbTC1sw6kmhBJNaEDdljDLbVwnnCpRwFOWaUyWJEDbTXkqUm6Rw9amVe4ga2TjTRwhLmiQOJVxwQChMGhQiPGmwGJXU4AO3iVoLc8dzn5nGJrMyyYtvDNJEpLRbPKkUN-JKW5nEYLG4tlgchP2obh3_pdMJ2oDvip_SQo38rdCnBmXkso3WgzC6fWyXK-obemfK2Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8UD-rB_0YUtQdvZrB1XeuOQySgQIyBhNvSdp0HzSCyHfDkR_Az-knsYzDBox67pEn31rf3e_9-D6EryAX5ytYWjf3IotqhliQRtZgSti1d11gEaBTu9lhrQO-H3qKaEHphcn6IIuAGmjH7X4OCQ0C69sMaKqIYWsmNz8KNN7WONmCsN9DnN54KBimH8zyxzBwo8XKGC95Gm9RW968gzGWcOjM0zV0kF0fM60teqlkqq-r9F3vjv95hD-3MYSgO8nuzj9Z0coC2l8gJD1E9SHBgTjrKJrj7TK6_Pj7rxuRFuJGJV7NojxKcs3NOMURzMZSM4EeYuoYbUBafTo_QoHnXv21Z84kL1tjgMtd8K9uPb2zBqCeFEkxqQdyYMcpsX0WcKyDDUZRrTpUkQthMezFRbhRD9lMr9xiVklGiTxCWNIocSrjgAFKYNEBEeNLAMSqpgQhuGVUW8g7najMJjXNl_BffCKSMyExw4Tgn3QhzemUSgsTCQmJh0Gh2i9XpXzZdos1Wv9sJO-3ewxnagud5uUoFldK3TJ8b0JHKi9m1-gbbts1h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgSAgGvhGFAh7YUEriuDYZW0LVAq0qRKVukb_CAEor2gxl4ifwG_kl-JI2tIwwOpIl58WXe2ffvUPoAu6CAuUah8aBdqjxqCOJpg5TwnWl71uPAIXCnS5r9endoDZYqOLP9SGKAzewjOx_DQY-0vHVj2io0DFUktuQhdtgahWtUeYG0LwhfCwEpDzO83tl5kGGlzeYyza65Gp5_hLBXKSpmZ9pbiMxX2GeXvJSTSeyqt5_iTf-5xV20NaMhOJ6vmt20YpJ9tDmgjThPmrUE1y3Cx2mY9x5JpdfH58N6_A0DlPxagftYYJzbc4phrNcDAkjuAc913AISfGT6QHqN2-fblrOrN-CM7KszLdfyg3ia1cwWpNCCSaNIH7MGACrNOcKpHAU5YZTJYkQLjO1mChfx3D3aZR_iErJMDFHCEuqtUcJFxwoCpOWhoiatGSMSmoJgl9GlTnc0cxoxpENrWz0ElhAyohkuEWjXHIjysWVSQSIRQViUT1sdorR8V8mnaP1XtiMHtrd-xO0AY_zXJUKKk3eUnNqGcdEnmWb6huYp8wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Aqueous+Mg2%2B%E2%80%90Based+Dual%E2%80%90Ion+Battery+with+High+Power+Density&rft.jtitle=Advanced+functional+materials&rft.au=Zhu%2C+Yunpei&rft.au=Yin%2C+Jun&rft.au=Emwas%2C+Abdul%E2%80%90Hamid&rft.au=Mohammed%2C+Omar+F.&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202107523&rft.externalDBID=10.1002%252Fadfm.202107523&rft.externalDocID=ADFM202107523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |