An Aqueous Mg2+‐Based Dual‐Ion Battery with High Power Density

Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as ins...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 50
Main Authors Zhu, Yunpei, Yin, Jun, Emwas, Abdul‐Hamid, Mohammed, Omar F., Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries. An aqueous Mg2+ dual‐ion battery is proposed to show high power density and remarkable cycling stability. This battery chemistry relies on the concentrated electrolytes of Mg(NO3)2 featuring water‐shared ion pairs. This suppresses not only water activity but also enables a high rate and stable polyaniline cathode and polyimide anode.
AbstractList Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries. An aqueous Mg2+ dual‐ion battery is proposed to show high power density and remarkable cycling stability. This battery chemistry relies on the concentrated electrolytes of Mg(NO3)2 featuring water‐shared ion pairs. This suppresses not only water activity but also enables a high rate and stable polyaniline cathode and polyimide anode.
Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to its strong interaction with electrode materials and electrolyte molecules, resulting in sluggish Mg2+ dissociation and diffusion as well as insufficient power density and cycling stability. Here an aqueous Mg2+‐based dual‐ion battery is reported to bypass the penalties of slow dissociation and solid‐state diffusion. This battery chemistry utilizes fast redox reactions on the polymer electrodes, i.e., anion (de)doping on the polyaniline (PANI) cathode and (de)enolization upon incorporating Mg2+ on the polyimide anode. The kinetically favored and stable electrodes depend on designing a saturated aqueous electrolyte of 4.5 m Mg(NO3)2. The concentrated electrolyte suppresses the irreversible deprotonation reaction of the PANI cathode to enable excellent stability (a lifespan of over 10 000 cycles) and rate performance (33% capacity retention at 500 C) and avoids the anodic parasitic reaction of nitrate reduction to deliver the stable polyimide anode (86.2% capacity retention after 6000 cycles). The resultant full Mg2+‐based dual‐ion battery shows a high specific power of 10 826 W kg−1, competitive with electrochemical supercapacitors. The electrolyte and electrode chemistries elucidated in this study provide an alternative approach to developing better‐performing Mg‐based batteries.
Author Mohammed, Omar F.
Emwas, Abdul‐Hamid
Alshareef, Husam N.
Yin, Jun
Zhu, Yunpei
Author_xml – sequence: 1
  givenname: Yunpei
  surname: Zhu
  fullname: Zhu, Yunpei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Abdul‐Hamid
  surname: Emwas
  fullname: Emwas, Abdul‐Hamid
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Omar F.
  surname: Mohammed
  fullname: Mohammed, Omar F.
  organization: Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNo9kEFPwkAQhTcGEwG9et7EoynO7ra79FhAhASiB028bZbtFEqgxW4b0ps_wd_oL3EJhtPMS15m3vt6pFOUBRJyz2DAAPiTSbP9gANnoCIurkiXSSYDAXzYuezs84b0nNsCMKVE2CWjpKDJV4Nl4-hyzR9_v39GxmFKJ43ZeTEvCzoydY1VS495vaGzfL2hb-URKzrBwuV1e0uuM7NzePc_--Rj-vw-ngWL15f5OFkEByaFCEKEOBuCkWG0MtbIFRouMilDCbFNlbLcB7KhQhXaFTcGJEYZtyLNgKsIreiTh_PdQ1X6xK7W27KpCv9Sc-k7D2Nf3rvis-uY77DVhyrfm6rVDPQJkj5B0hdIOplMlxcl_gCHPV9Z
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202107523
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202107523
Genre article
GrantInformation_xml – fundername: KAUST
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p1633-4e09f80a645baca6bea23f664609cd77c2734c47e74cb2aa06e5f2c3df0275ec3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:37:50 EDT 2025
Wed Jan 22 16:28:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1633-4e09f80a645baca6bea23f664609cd77c2734c47e74cb2aa06e5f2c3df0275ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5029-2142
PQID 2607589202
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2607589202
wiley_primary_10_1002_adfm_202107523_ADFM202107523
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 85
2017; 1
2017; 2
2017; 3
2010; 107
2002; 110
2019; 322
2020; 14
2009; 113
2020; 13
2021; 482
2020; 10
2019; 569
2001; 503
2011; 111
2020; 19
2018; 9
2020; 5
2020; 4
2013; 15
2018; 2
2018; 4
2014; 2
2019; 20
2019; 22
1995; 69
2010; 114
2020; 49
2005; 109
2021; 81
2021; 6
2018; 28
2019; 4
2019; 3
2009; 21
2020; 383
2015; 520
2017; 23
2009
2008; 10
2020; 422
2020; 32
2019; 141
1987; 18
2015; 25
2016; 7
2016; 1
2021; 12
2020; 30
2000; 147
2020; 25
2018; 51
2018; 12
2018; 11
2018; 10
2012; 5
2018; 57
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 109
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 141
  start-page: 2305
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 127
  year: 2020
  publication-title: Nat. Rev. Chem.
– volume: 1
  start-page: 739
  year: 2017
  publication-title: Joule
– volume: 110
  start-page: 229
  year: 2002
  publication-title: J. Power Sources
– volume: 569
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 15
  start-page: 9654
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 4
  start-page: 495
  year: 2019
  publication-title: Nat. Energy
– volume: 322
  start-page: 487
  year: 2019
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 7
  start-page: 1736
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 422
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 49
  start-page: 3565
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 34
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 114
  start-page: 5141
  year: 2010
  publication-title: J. Phys. Chem. A
– volume: 2
  start-page: 1115
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 113
  start-page: 8795
  year: 2009
  publication-title: J. Phys. Chem. A
– volume: 5
  start-page: 646
  year: 2020
  publication-title: Nat. Energy
– volume: 5
  start-page: 1043
  year: 2020
  publication-title: Nat. Energy
– volume: 482
  year: 2021
  publication-title: J. Power Sources
– volume: 18
  start-page: 311
  year: 1987
  publication-title: Synth. Met.
– volume: 2
  start-page: 1690
  year: 2018
  publication-title: Joule
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 12
  start-page: 3424
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 27
  year: 2019
  publication-title: Joule
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 4642
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1557
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 605
  year: 2020
  publication-title: Nat. Energy
– volume: 69
  start-page: 85
  year: 1995
  publication-title: Synth. Met.
– volume: 51
  start-page: 258
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 109
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 25
  start-page: 1
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 503
  start-page: 105
  year: 2001
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 564
  year: 2018
  publication-title: Chem
– start-page: 836
  year: 2009
  publication-title: Chem. Commun.
– volume: 147
  start-page: 899
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 218
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 2876
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1121
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 23
  start-page: 2560
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 2
  start-page: 581
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 253
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 25
  start-page: 6519
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4793
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 782
  year: 2019
  publication-title: Joule
– volume: 14
  start-page: 1102
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 3950
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 4469
  year: 2018
  publication-title: Nat. Commun.
– volume: 107
  start-page: 6616
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 532
  year: 2018
  publication-title: Nat. Chem.
– volume: 141
  start-page: 6338
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 520
  start-page: 324
  year: 2015
  publication-title: Nature
– volume: 21
  start-page: 280
  year: 2009
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9726
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 85
  start-page: 969
  year: 1989
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 19
  start-page: 1151
  year: 2020
  publication-title: Nat. Mater.
– volume: 111
  start-page: 435
  year: 2011
  publication-title: Int. J. Quantum Chem.
SSID ssj0017734
Score 2.560337
Snippet Rechargeable Mg batteries promise low‐cost, safe, and high‐energy alternatives to Li‐ion batteries. However, the high polarization strength of Mg2+ leads to...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Alternative energy sources
Anodes
Aqueous electrolytes
Cathodes
Diffusion rate
Electrode materials
Electrode polarization
Electrolytes
energy storage mechanism
high power
high stability
ion pairs
Lithium
Lithium-ion batteries
Materials science
Polyanilines
Rechargeable batteries
Redox reactions
Stability
Strong interactions (field theory)
Title An Aqueous Mg2+‐Based Dual‐Ion Battery with High Power Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107523
https://www.proquest.com/docview/2607589202
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQWWDgG1EolQc2lDZxHJuMKaEqiCAEVOoW2Y7DAEormgxl4ifwG_kl-JI2tIywxYMl--LzvbPfPSN0BndBvrK1RVM_sah2qCVJQi2mhG1L1zURAQqFozs2GNKbkTdaquKv9CHqAzfwjHK_BgcXctr9EQ0VSQqV5CZl4SaZMpswELYAFT3U-lEO59W1MnOA4OWMFqqNNumudl_Bl8sotQwz_W0kFgOs2CUvnSKXHfX-S7vxPzPYQVtzDIqDatHsojWd7aHNJWXCfdQLMhyYgY6LKY6eyfnXx2fPxLsEh4V4NY3rcYYrac4ZhqNcDHwRfA9PruEQOPH57AAN-1dPlwNr_tyCNTGgzDU_yvbTC1sw6kmhBJNaEDdljDLbVwnnCpRwFOWaUyWJEDbTXkqUm6Rw9amVe4ga2TjTRwhLmiQOJVxwQChMGhQiPGmwGJXU4AO3iVoLc8dzn5nGJrMyyYtvDNJEpLRbPKkUN-JKW5nEYLG4tlgchP2obh3_pdMJ2oDvip_SQo38rdCnBmXkso3WgzC6fWyXK-obemfK2Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8UD-rB_0YUtQdvZrB1XeuOQySgQIyBhNvSdp0HzSCyHfDkR_Az-knsYzDBox67pEn31rf3e_9-D6EryAX5ytYWjf3IotqhliQRtZgSti1d11gEaBTu9lhrQO-H3qKaEHphcn6IIuAGmjH7X4OCQ0C69sMaKqIYWsmNz8KNN7WONmCsN9DnN54KBimH8zyxzBwo8XKGC95Gm9RW968gzGWcOjM0zV0kF0fM60teqlkqq-r9F3vjv95hD-3MYSgO8nuzj9Z0coC2l8gJD1E9SHBgTjrKJrj7TK6_Pj7rxuRFuJGJV7NojxKcs3NOMURzMZSM4EeYuoYbUBafTo_QoHnXv21Z84kL1tjgMtd8K9uPb2zBqCeFEkxqQdyYMcpsX0WcKyDDUZRrTpUkQthMezFRbhRD9lMr9xiVklGiTxCWNIocSrjgAFKYNEBEeNLAMSqpgQhuGVUW8g7najMJjXNl_BffCKSMyExw4Tgn3QhzemUSgsTCQmJh0Gh2i9XpXzZdos1Wv9sJO-3ewxnagud5uUoFldK3TJ8b0JHKi9m1-gbbts1h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgSAgGvhGFAh7YUEriuDYZW0LVAq0qRKVukb_CAEor2gxl4ifwG_kl-JI2tIwwOpIl58WXe2ffvUPoAu6CAuUah8aBdqjxqCOJpg5TwnWl71uPAIXCnS5r9endoDZYqOLP9SGKAzewjOx_DQY-0vHVj2io0DFUktuQhdtgahWtUeYG0LwhfCwEpDzO83tl5kGGlzeYyza65Gp5_hLBXKSpmZ9pbiMxX2GeXvJSTSeyqt5_iTf-5xV20NaMhOJ6vmt20YpJ9tDmgjThPmrUE1y3Cx2mY9x5JpdfH58N6_A0DlPxagftYYJzbc4phrNcDAkjuAc913AISfGT6QHqN2-fblrOrN-CM7KszLdfyg3ia1cwWpNCCSaNIH7MGACrNOcKpHAU5YZTJYkQLjO1mChfx3D3aZR_iErJMDFHCEuqtUcJFxwoCpOWhoiatGSMSmoJgl9GlTnc0cxoxpENrWz0ElhAyohkuEWjXHIjysWVSQSIRQViUT1sdorR8V8mnaP1XtiMHtrd-xO0AY_zXJUKKk3eUnNqGcdEnmWb6huYp8wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Aqueous+Mg2%2B%E2%80%90Based+Dual%E2%80%90Ion+Battery+with+High+Power+Density&rft.jtitle=Advanced+functional+materials&rft.au=Zhu%2C+Yunpei&rft.au=Yin%2C+Jun&rft.au=Emwas%2C+Abdul%E2%80%90Hamid&rft.au=Mohammed%2C+Omar+F.&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202107523&rft.externalDBID=10.1002%252Fadfm.202107523&rft.externalDocID=ADFM202107523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon