The photoelastic coefficient P12 of H+ implanted GaAs as a function of defect density
The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, det...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; p. 15150 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-017-14903-x |
Cover
Loading…
Abstract | The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H
+
) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H
+
energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient
P
12
profile in non-annealed H
+
implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient
P
12
depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs. |
---|---|
AbstractList | The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H
+
) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H
+
energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient
P
12
profile in non-annealed H
+
implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient
P
12
depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs. The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H+) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H+ energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H+ implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H+) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H+ energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H+ implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs. |
Author | Baydin, Andrey Garnett, Joy Krzyzanowska, Halina Gatamov, Rustam Tolk, Norman |
Author_xml | – sequence: 1 givenname: Andrey orcidid: 0000-0002-2567-3506 surname: Baydin fullname: Baydin, Andrey email: andrey.baydin@vanderbilt.edu organization: Department of Physics and Astronomy, Vanderbilt University – sequence: 2 givenname: Halina surname: Krzyzanowska fullname: Krzyzanowska, Halina organization: Department of Physics and Astronomy, Vanderbilt University, Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1 – sequence: 3 givenname: Rustam surname: Gatamov fullname: Gatamov, Rustam organization: Department of Physics and Astronomy, Vanderbilt University – sequence: 4 givenname: Joy surname: Garnett fullname: Garnett, Joy organization: Interdisciplinary Materials Science Program, Vanderbilt University, Department of Life and Physical Sciences, Fisk University – sequence: 5 givenname: Norman surname: Tolk fullname: Tolk, Norman organization: Department of Physics and Astronomy, Vanderbilt University |
BookMark | eNpNkE1LAzEQhoNUsNb-AU85CrKaTJL9OJairVDQQ3sO2WxiU7bJuslC_fdurQeHgXcOD8PLc4smPniD0D0lT5Sw8jlyKqoyI7TIKK8Iy05XaAqEiwwYwOTffYPmMR7IOAIqTqsp2m33Bnf7kIJpVUxOYx2MtU474xP-oICDxetH7I5dq3wyDV6pRcRqXGwHr5ML_ow0xhqdxvDRpe87dG1VG838L2do9_qyXa6zzfvqbbnYZB3NIWVFw6GwCkRZE9BAcsiVJkwxSwFqxmrdgG4EVwxqoxnhtS00F9woqxgVOZuhh8vfrg9fg4lJHl3Uph2rmjBESaucQUGJoCPKLmjseuc_TS8PYej92E5SIs8e5cWjHD3KX4_yxH4Awu5m4g |
ContentType | Journal Article |
Copyright | The Author(s) 2017 |
Copyright_xml | – notice: The Author(s) 2017 |
DBID | C6C 7X8 |
DOI | 10.1038/s41598-017-14903-x |
DatabaseName | Springer Nature OA Free Journals MEDLINE - Academic |
DatabaseTitle | MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | 10_1038_s41598_017_14903_x |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP 7X8 AASML AFPKN PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO |
ID | FETCH-LOGICAL-p162t-7d427fa258b02c20626ac03a3f122b33bcd2cd54a32bec304bf7c454eafa31563 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Thu Sep 04 23:35:25 EDT 2025 Fri Feb 21 02:39:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p162t-7d427fa258b02c20626ac03a3f122b33bcd2cd54a32bec304bf7c454eafa31563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2567-3506 |
OpenAccessLink | https://www.nature.com/articles/s41598-017-14903-x |
PQID | 1963271051 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1963271051 springer_journals_10_1038_s41598_017_14903_x |
PublicationCentury | 2000 |
PublicationDate | 20171109 |
PublicationDateYYYYMMDD | 2017-11-09 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171109 day: 9 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | RuelloPGusevVEPhysical mechanisms of coherent acoustic phonons generation by ultrafast laser actionUltrasonics2015562110.1016/j.ultras.2014.06.004250389581:CAS:528:DC%2BC2cXht1Wmu7rM Pine, A. S. Brillouin Scattering in Semiconductors (Springer Berlin Heidelberg, 1975). Renosi, P., Sapriel, J. & Djafari-Rouhani, B. Resonant acousto-optic effects in InP and GaAs and related devices. In 5th International Conference on Indium Phosphide and Related Materials, 592–595 (IEEE, 1993). BalramKCDavançoMLimJYSongJDSrinivasanKMoving boundary and photoelastic coupling in GaAs optomechanical resonatorsOptica2014141410.1364/OPTICA.1.0004141:CAS:528:DC%2BC2MXlsVehsbY%3D BourdarieSXapsosMThe near-earth space radiation environmentIEEE Trans. Nucl. Sci.20085518102008ITNS...55.1810B10.1109/TNS.2008.20014091:CAS:528:DC%2BD1cXht1Kqt7vO SteigerwaldASemiconductor point defect concentration profiles measured using coherent acoustic phonon wavesAppl. Phys. Lett.2009941119102009ApPhL..94k1910S10.1063/1.30993411:CAS:528:DC%2BD1MXjsFSltrs%3D Schimmerling, W. & Curtis, S. Workshop on the radiation environment of the satellite power system (Lawrence Berkeley National Laboratory, 1978). HaoH-YMarisHDispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphirePhys. Rev. B2001632243012001PhRvB..63v4301H10.1103/PhysRevB.63.2243011:CAS:528:DC%2BD3MXjvF2ls7o%3D ChanJSafavi-NaeiniAHHillJTMeenehanSPainterOOptimized optomechanical crystal cavity with acoustic radiation shieldAppl. Phys. Lett.20121010811152012ApPhL.101h1115C10.1063/1.47477261:CAS:528:DC%2BC38Xht1CgtLfK GusevVLomonosovAMRuelloPAyouchAVaudelGDepth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: TheoryJ. Appl. Phys.20111101249082011JAP...110l4908G10.1063/1.36656461:CAS:528:DC%2BC3MXhs1Cgu7jP MatsudaOWrightOLaser picosecond acoustics in a two-layer structure with oblique probe light incidenceUltrasonics20044265365610.1016/j.ultras.2004.01.052150473621:STN:280:DC%2BD2c7lsFKksQ%3D%3D KuriakoseMPicosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressuresUltrasonics20166925910.1016/j.ultras.2016.03.00727026585 DaiJMukundhanPKimCMarisHJAnalysis of a picosecond ultrasonic method for measurement of stress in a substrateJ. Appl. Phys.20161191057052016JAP...119j5705D10.1063/1.49435411:CAS:528:DC%2BC28XktFenuro%3D SteigerwaldAHmeloABVargaKFeldmanLCTolkNDetermination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopyJ. Appl. Phys.20121120135142012JAP...112a3514S10.1063/1.47320721:CAS:528:DC%2BC38XpvV2ku70%3D BaydinADepth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC measured using coherent acoustic phononsAPL Photonics201610361022016APLP....1c6102B10.1063/1.49454431:CAS:528:DC%2BC2sXhtVKgsr4%3D NikitinSMRevealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scatteringSci. Rep.2015510.1038/srep093522579080843668611:CAS:528:DC%2BC2MXotlaisb4%3D ZieglerJFZieglerMBiersackJ{SRIM} – the stopping and range of ions in matter (2010)Nucl. Instrum. Methods Phys. Res., Sect. B201026818182010NIMPB.268.1818Z10.1016/j.nimb.2010.02.0911:CAS:528:DC%2BC3cXmtFait70%3D ChabanITime-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquidsRev. Sci. Instrum.2017880749042017RScI...88g4904C10.1063/1.4993132287645241:CAS:528:DC%2BC2sXhtFyqt7zN MatsudaOLarcipreteMCLi VotiRWrightOBFundamentals of picosecond laser ultrasonicsUltrasonics201556310.1016/j.ultras.2014.06.005249981191:CAS:528:DC%2BC2cXhtFWgtrbK TasGLoomisJJMarisHJBailesAASeiberlingLEPicosecond ultrasonics study of the modification of interfacial bonding by ion implantationAppl. Phys. Lett.19987222351998ApPhL..72.2235T10.1063/1.1212761:CAS:528:DyaK1cXisVaksbs%3D KhafizovMSubsurface imaging of grain microstructure using picosecond ultrasonicsActa Mater.201611220910.1016/j.actamat.2016.04.0031:CAS:528:DC%2BC28XmsVegt7Y%3D ScherbakovAVPicosecond opto-acoustic interferometry and polarimetry in high-index GaAsOpt. Express201321164732013OExpr..2116473S10.1364/OE.21.016473239384981:CAS:528:DC%2BC3sXht1yqtrrO HeCAcoustic waves undetectable by transient reflectivity measurementsPhys. Rev. B2017951843022017PhRvB..95r4302H10.1103/PhysRevB.95.184302 GregoryJSteigerwaldATakahashiHHmeloATolkNIon implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopyAppl. Phys. Lett.20121011819042012ApPhL.101r1904G10.1063/1.47656471:CAS:528:DC%2BC38XhsF2qu7zO ThomsenCGrahnHTMarisHJTaucJSurface generation and detection of phonons by picosecond light pulsesPhys. Rev. B19863441291986PhRvB..34.4129T10.1103/PhysRevB.34.41291:CAS:528:DyaL28Xls1Wrsr8%3D JohnstonARaxBProton damage in linear and digital optocouplersIEEE Trans. Nucl. Sci.2000476752000ITNS...47..675J10.1109/23.856497 PéronneEPerrinBGeneration and detection of acoustic solitons in crystalline slabs by laser ultrasonicsUltrasonics200644e120310.1016/j.ultras.2006.05.07216814345 MechriCDepth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometryAppl. Phys. Lett.2009950919072009ApPhL..95i1907M10.1063/1.32200631:CAS:528:DC%2BD1MXhtV2qtLzL RossignolCRampnouxJDehouxTDilhaireSAudoinBPicosecond ultrasonics time resolved spectroscopy using a photonic crystal fiberUltrasonics200644e128310.1016/j.ultras.2006.05.082168063561:CAS:528:DC%2BD28XktVSit78%3D Adachi, S. Elastooptic and electrooptic effects (World Scietific, 1994). HudertFBartelsADekorsyTKöhlerKInfluence of doping profiles on coherent acoustic phonon detection and generation in semiconductorsJ. Appl. Phys.20081041235092008JAP...104l3509H10.1063/1.30331401:CAS:528:DC%2BD1cXhsFartLjE LomonosovAMNanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low- k Material Thin FilmACS Nano20126141010.1021/nn204210u222116671:CAS:528:DC%2BC38Xpt1ag |
References_xml | – reference: Schimmerling, W. & Curtis, S. Workshop on the radiation environment of the satellite power system (Lawrence Berkeley National Laboratory, 1978). – reference: HudertFBartelsADekorsyTKöhlerKInfluence of doping profiles on coherent acoustic phonon detection and generation in semiconductorsJ. Appl. Phys.20081041235092008JAP...104l3509H10.1063/1.30331401:CAS:528:DC%2BD1cXhsFartLjE – reference: MatsudaOWrightOLaser picosecond acoustics in a two-layer structure with oblique probe light incidenceUltrasonics20044265365610.1016/j.ultras.2004.01.052150473621:STN:280:DC%2BD2c7lsFKksQ%3D%3D – reference: MatsudaOLarcipreteMCLi VotiRWrightOBFundamentals of picosecond laser ultrasonicsUltrasonics201556310.1016/j.ultras.2014.06.005249981191:CAS:528:DC%2BC2cXhtFWgtrbK – reference: KhafizovMSubsurface imaging of grain microstructure using picosecond ultrasonicsActa Mater.201611220910.1016/j.actamat.2016.04.0031:CAS:528:DC%2BC28XmsVegt7Y%3D – reference: ZieglerJFZieglerMBiersackJ{SRIM} – the stopping and range of ions in matter (2010)Nucl. Instrum. Methods Phys. Res., Sect. B201026818182010NIMPB.268.1818Z10.1016/j.nimb.2010.02.0911:CAS:528:DC%2BC3cXmtFait70%3D – reference: Renosi, P., Sapriel, J. & Djafari-Rouhani, B. Resonant acousto-optic effects in InP and GaAs and related devices. In 5th International Conference on Indium Phosphide and Related Materials, 592–595 (IEEE, 1993). – reference: HeCAcoustic waves undetectable by transient reflectivity measurementsPhys. Rev. B2017951843022017PhRvB..95r4302H10.1103/PhysRevB.95.184302 – reference: KuriakoseMPicosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressuresUltrasonics20166925910.1016/j.ultras.2016.03.00727026585 – reference: RossignolCRampnouxJDehouxTDilhaireSAudoinBPicosecond ultrasonics time resolved spectroscopy using a photonic crystal fiberUltrasonics200644e128310.1016/j.ultras.2006.05.082168063561:CAS:528:DC%2BD28XktVSit78%3D – reference: DaiJMukundhanPKimCMarisHJAnalysis of a picosecond ultrasonic method for measurement of stress in a substrateJ. Appl. Phys.20161191057052016JAP...119j5705D10.1063/1.49435411:CAS:528:DC%2BC28XktFenuro%3D – reference: SteigerwaldAHmeloABVargaKFeldmanLCTolkNDetermination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopyJ. Appl. Phys.20121120135142012JAP...112a3514S10.1063/1.47320721:CAS:528:DC%2BC38XpvV2ku70%3D – reference: JohnstonARaxBProton damage in linear and digital optocouplersIEEE Trans. Nucl. Sci.2000476752000ITNS...47..675J10.1109/23.856497 – reference: TasGLoomisJJMarisHJBailesAASeiberlingLEPicosecond ultrasonics study of the modification of interfacial bonding by ion implantationAppl. Phys. Lett.19987222351998ApPhL..72.2235T10.1063/1.1212761:CAS:528:DyaK1cXisVaksbs%3D – reference: SteigerwaldASemiconductor point defect concentration profiles measured using coherent acoustic phonon wavesAppl. Phys. Lett.2009941119102009ApPhL..94k1910S10.1063/1.30993411:CAS:528:DC%2BD1MXjsFSltrs%3D – reference: RuelloPGusevVEPhysical mechanisms of coherent acoustic phonons generation by ultrafast laser actionUltrasonics2015562110.1016/j.ultras.2014.06.004250389581:CAS:528:DC%2BC2cXht1Wmu7rM – reference: ThomsenCGrahnHTMarisHJTaucJSurface generation and detection of phonons by picosecond light pulsesPhys. Rev. B19863441291986PhRvB..34.4129T10.1103/PhysRevB.34.41291:CAS:528:DyaL28Xls1Wrsr8%3D – reference: Pine, A. S. Brillouin Scattering in Semiconductors (Springer Berlin Heidelberg, 1975). – reference: BaydinADepth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC measured using coherent acoustic phononsAPL Photonics201610361022016APLP....1c6102B10.1063/1.49454431:CAS:528:DC%2BC2sXhtVKgsr4%3D – reference: GregoryJSteigerwaldATakahashiHHmeloATolkNIon implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopyAppl. Phys. Lett.20121011819042012ApPhL.101r1904G10.1063/1.47656471:CAS:528:DC%2BC38XhsF2qu7zO – reference: ChanJSafavi-NaeiniAHHillJTMeenehanSPainterOOptimized optomechanical crystal cavity with acoustic radiation shieldAppl. Phys. Lett.20121010811152012ApPhL.101h1115C10.1063/1.47477261:CAS:528:DC%2BC38Xht1CgtLfK – reference: BalramKCDavançoMLimJYSongJDSrinivasanKMoving boundary and photoelastic coupling in GaAs optomechanical resonatorsOptica2014141410.1364/OPTICA.1.0004141:CAS:528:DC%2BC2MXlsVehsbY%3D – reference: GusevVLomonosovAMRuelloPAyouchAVaudelGDepth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: TheoryJ. Appl. Phys.20111101249082011JAP...110l4908G10.1063/1.36656461:CAS:528:DC%2BC3MXhs1Cgu7jP – reference: Adachi, S. Elastooptic and electrooptic effects (World Scietific, 1994). – reference: PéronneEPerrinBGeneration and detection of acoustic solitons in crystalline slabs by laser ultrasonicsUltrasonics200644e120310.1016/j.ultras.2006.05.07216814345 – reference: HaoH-YMarisHDispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphirePhys. Rev. B2001632243012001PhRvB..63v4301H10.1103/PhysRevB.63.2243011:CAS:528:DC%2BD3MXjvF2ls7o%3D – reference: LomonosovAMNanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low- k Material Thin FilmACS Nano20126141010.1021/nn204210u222116671:CAS:528:DC%2BC38Xpt1ag – reference: BourdarieSXapsosMThe near-earth space radiation environmentIEEE Trans. Nucl. Sci.20085518102008ITNS...55.1810B10.1109/TNS.2008.20014091:CAS:528:DC%2BD1cXht1Kqt7vO – reference: ChabanITime-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquidsRev. Sci. Instrum.2017880749042017RScI...88g4904C10.1063/1.4993132287645241:CAS:528:DC%2BC2sXhtFyqt7zN – reference: MechriCDepth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometryAppl. Phys. Lett.2009950919072009ApPhL..95i1907M10.1063/1.32200631:CAS:528:DC%2BD1MXhtV2qtLzL – reference: ScherbakovAVPicosecond opto-acoustic interferometry and polarimetry in high-index GaAsOpt. Express201321164732013OExpr..2116473S10.1364/OE.21.016473239384981:CAS:528:DC%2BC3sXht1yqtrrO – reference: NikitinSMRevealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scatteringSci. Rep.2015510.1038/srep093522579080843668611:CAS:528:DC%2BC2MXotlaisb4%3D |
SSID | ssj0000529419 |
Score | 2.2579181 |
Snippet | The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 15150 |
SubjectTerms | 140/125 639/766/119/1000 639/766/400/584 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KRfAiPvHNCt50NfvK4yBSxFqEigcDvYXdzQaFmtQmhfbfO5vHQelFCOQyuXzfTuYbZmcGoSvK_cxNXSeSS0NEpFMSKZOSzBidpaCZw8g1OI9f_VEsXiZy0kPduqMWwHJtauf2ScXz6e3ye_UADn_ftIyHdyUEIdcoBv9b0PseJ6ApNyAy-e6Uj1u538z6ZpGgUds7s_7TX0rzT3G0jjnDHbTdikU8aNjdRT2b76HNZn3kah_FwDGefRRVYUEDgw02ha1HQkAkwW-U4SLDo2v8-TWbOgBT_KwGJVbwYBfPHCfOJLXuTge8cndB4wDFw6f3xxFp1ySQGfVZRYJUsCBTTIbaY4Z5kKIo43HFM8qY5lyblJlUCsUZEMY9obPACCmsyhSH9I0fon5e5PYIYct9FUqQRDRSQoFvBzpgUmkbaOMqnMfosgMngWPoagsqt8WiTJwjM1Arkh6jmw61pKMzqUvdPEwavBPAO6nxTpYn_zM_RVusZosSLzpD_Wq-sOcgCyp9UXP9A1M-s00 priority: 102 providerName: Scholars Portal |
Title | The photoelastic coefficient P12 of H+ implanted GaAs as a function of defect density |
URI | https://link.springer.com/article/10.1038/s41598-017-14903-x https://www.proquest.com/docview/1963271051 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zQ_BFvOK8jAi-abDNpZfHOjbHYGOog72VJE1R0Ha4DvTfe5K1guKLUJqHnkL5zknOl55LELryWZDbrutEMKEJj1VGYqkzkmut8gw4cxTbAufJNBjN-XghFi1Em1oYl7TvWlq6ZbrJDrtdgaOxxWCwpgKn9xgB3tixrdttv_x-0P_-r2IjV9yP6_oYj0V_vPqDTf4KgDq_MtxDuzUhxMnmE_ZRyxQHaHtzROTnIZqDHvHyuaxKAzwXZLAujWv7AN4Cz3yKyxyPrvHL2_LVgpThe5mssIQLW59lcbcimbF5GzAUNgnjCM2Hg6f-iNRHIZClH9CKhBmnYS6piJRHNfVgGyK1xyTLfUoVY0pnVGeCS0ZBKczjKg81F9zIXDLYorFj1C7KwpwgbFggIwG0x48llzB_QxVSIZUJlbZRzC66bMBJwdRs_EAWplyvUjtZKTAS4XfRTYNaWts8PLbhbBalG7xTwDt1eKcfp_8TP0M71GnLJ158jtrV-9pcgOuvVA9thYuwhzpJMn4cw3g3mM4ees4Cem47DfcJj74ADmCvgg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jQ_RFvOK8RvBNg20uvTwWcda5DcEN9laSNEFB2-E60H_vSdcJii9CoQ89hfKdJOdLv3NOELrwWWBd13UimNCExyonsdQ5sVormwNnjmJX4DwcBemE96di2kJ0VQtTJ-3XLS3rZXqVHXY9h0DjisFgTQVO7zECvLHjmrHTNuokSf-p__1nxWlX3I-bChmPRX-8_INP_pJA68jS20KbDSXEyfIjtlHLFDtobXlI5OcumoAn8ey5rEoDTBdssC5N3fgB4gV-9CkuLU4v8cvb7NXBlOM7mcyxhAu7qOWQdya5cZkbcCtcGsYemvRuxzcpaQ5DIDM_oBUJc05DK6mIlEc19WAjIrXHJLM-pYoxpXOqc8Elo-AW5nFlQ80FN9JKBps0to_aRVmYA4QNC2QkgPj4seQSZnCoQiqkMqHSTsfsovMVOBkMNqcgyMKUi3nmpisFTiL8LrpaoZY1ox4eO0GbRdkS7wzwzmq8s4_D_5mfofV0PBxkg_vRwxHaoLXnfOLFx6hdvS_MCRCBSp02nv8CK0Ct8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qRfEiPrE-V_Cmq8k-8jiWaq2v0oOF3sI-UdCk2Bbqv3c2TQTFixDIIRMI3-zufJv5Zhahs5BFznddJ4IJTXiqDEmlNsRprZwBzpykvsD5qR_1hvx-JEYNFNW1MKVov2xpWS7TtTrsagKBxheDwZoKnD5gZH45Nm4JLQPfDryUrxN1vv-t-OwVD9OqRiZgyR-v_2CUv5KgZWzpbqD1ihTi9uIzNlHD5ltoZXFM5Oc2GoIv8filmBYWuC7YYF3YsvUDRAw8CCkuHO6d49f38ZsHyuBb2Z5gCRf2cctj702M9doNuOVeiLGDht2b506PVMchkHEY0SmJDaexk1QkKqCaBrAVkTpgkrmQUsWY0oZqI7hkFBzDAq5crLngVjrJYJvGdlEzL3K7h7BlkUwEUJ8wlVzCHI5VTIVUNlbaZzJb6LQGJ4Ph5nMIMrfFbJL5CUuBlYiwhS5q1LJq3MNjn9JmSbbAOwO8sxLvbL7_P_MTtDq47maPd_2HA7RGS8eFJEgPUXP6MbNHwASm6rh0-xfVnK2e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photoelastic+coefficient+P12+of+H%2B+implanted+GaAs+as+a+function+of+defect+density&rft.jtitle=Scientific+reports&rft.au=Baydin%2C+Andrey&rft.au=Krzyzanowska%2C+Halina&rft.au=Gatamov%2C+Rustam&rft.au=Garnett%2C+Joy&rft.date=2017-11-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-017-14903-x&rft.externalDocID=10_1038_s41598_017_14903_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |