The photoelastic coefficient P12 of H+ implanted GaAs as a function of defect density

The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, det...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; p. 15150
Main Authors Baydin, Andrey, Krzyzanowska, Halina, Gatamov, Rustam, Garnett, Joy, Tolk, Norman
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.11.2017
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-017-14903-x

Cover

Loading…
Abstract The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H + ) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H + energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H + implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.
AbstractList The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H + ) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H + energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H + implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.
The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H+) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H+ energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H+ implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study stress distribution in lattice-mismatched semiconductor heterostructures. GaAs based optoelectronic devices (e.g. solar cells, modulators, detectors, and diodes) used in space probes are subject to damage arising from energetic proton (H+) irradiation. For that reason, the effect of proton irradiation on photoelastic coefficients of GaAs is of primary importance to space applied optoelectronics. However, there yet remains a lack of systematic studies of energetic proton induced changes in the photoelastic properties of bulk GaAs. In this work, the H+ energy and fluence chosen for GaAs implantation are similar to that of protons originating from the radiation belts and solar flares. We present the depth-dependent photoelastic coefficient P 12 profile in non-annealed H+ implanted GaAs obtained from the analysis of the time-domain Brillouin scattering spectra. The depth-dependent profiles are found to be broader than the defect distribution profiles predicted by Monte Carlo simulations. This fact indicates that the changes in photoelastic coefficient P 12 depend nonlinearly on the defect concentrations created by the hydrogen implantation. These studies provide insight into the spatial extent to which defects influence photoelastic properties of GaAs.
Author Baydin, Andrey
Garnett, Joy
Krzyzanowska, Halina
Gatamov, Rustam
Tolk, Norman
Author_xml – sequence: 1
  givenname: Andrey
  orcidid: 0000-0002-2567-3506
  surname: Baydin
  fullname: Baydin, Andrey
  email: andrey.baydin@vanderbilt.edu
  organization: Department of Physics and Astronomy, Vanderbilt University
– sequence: 2
  givenname: Halina
  surname: Krzyzanowska
  fullname: Krzyzanowska, Halina
  organization: Department of Physics and Astronomy, Vanderbilt University, Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1
– sequence: 3
  givenname: Rustam
  surname: Gatamov
  fullname: Gatamov, Rustam
  organization: Department of Physics and Astronomy, Vanderbilt University
– sequence: 4
  givenname: Joy
  surname: Garnett
  fullname: Garnett, Joy
  organization: Interdisciplinary Materials Science Program, Vanderbilt University, Department of Life and Physical Sciences, Fisk University
– sequence: 5
  givenname: Norman
  surname: Tolk
  fullname: Tolk, Norman
  organization: Department of Physics and Astronomy, Vanderbilt University
BookMark eNpNkE1LAzEQhoNUsNb-AU85CrKaTJL9OJairVDQQ3sO2WxiU7bJuslC_fdurQeHgXcOD8PLc4smPniD0D0lT5Sw8jlyKqoyI7TIKK8Iy05XaAqEiwwYwOTffYPmMR7IOAIqTqsp2m33Bnf7kIJpVUxOYx2MtU474xP-oICDxetH7I5dq3wyDV6pRcRqXGwHr5ML_ow0xhqdxvDRpe87dG1VG838L2do9_qyXa6zzfvqbbnYZB3NIWVFw6GwCkRZE9BAcsiVJkwxSwFqxmrdgG4EVwxqoxnhtS00F9woqxgVOZuhh8vfrg9fg4lJHl3Uph2rmjBESaucQUGJoCPKLmjseuc_TS8PYej92E5SIs8e5cWjHD3KX4_yxH4Awu5m4g
ContentType Journal Article
Copyright The Author(s) 2017
Copyright_xml – notice: The Author(s) 2017
DBID C6C
7X8
DOI 10.1038/s41598-017-14903-x
DatabaseName Springer Nature OA Free Journals
MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID 10_1038_s41598_017_14903_x
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
7X8
AASML
AFPKN
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ID FETCH-LOGICAL-p162t-7d427fa258b02c20626ac03a3f122b33bcd2cd54a32bec304bf7c454eafa31563
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Thu Sep 04 23:35:25 EDT 2025
Fri Feb 21 02:39:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p162t-7d427fa258b02c20626ac03a3f122b33bcd2cd54a32bec304bf7c454eafa31563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2567-3506
OpenAccessLink https://www.nature.com/articles/s41598-017-14903-x
PQID 1963271051
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1963271051
springer_journals_10_1038_s41598_017_14903_x
PublicationCentury 2000
PublicationDate 20171109
PublicationDateYYYYMMDD 2017-11-09
PublicationDate_xml – month: 11
  year: 2017
  text: 20171109
  day: 9
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References RuelloPGusevVEPhysical mechanisms of coherent acoustic phonons generation by ultrafast laser actionUltrasonics2015562110.1016/j.ultras.2014.06.004250389581:CAS:528:DC%2BC2cXht1Wmu7rM
Pine, A. S. Brillouin Scattering in Semiconductors (Springer Berlin Heidelberg, 1975).
Renosi, P., Sapriel, J. & Djafari-Rouhani, B. Resonant acousto-optic effects in InP and GaAs and related devices. In 5th International Conference on Indium Phosphide and Related Materials, 592–595 (IEEE, 1993).
BalramKCDavançoMLimJYSongJDSrinivasanKMoving boundary and photoelastic coupling in GaAs optomechanical resonatorsOptica2014141410.1364/OPTICA.1.0004141:CAS:528:DC%2BC2MXlsVehsbY%3D
BourdarieSXapsosMThe near-earth space radiation environmentIEEE Trans. Nucl. Sci.20085518102008ITNS...55.1810B10.1109/TNS.2008.20014091:CAS:528:DC%2BD1cXht1Kqt7vO
SteigerwaldASemiconductor point defect concentration profiles measured using coherent acoustic phonon wavesAppl. Phys. Lett.2009941119102009ApPhL..94k1910S10.1063/1.30993411:CAS:528:DC%2BD1MXjsFSltrs%3D
Schimmerling, W. & Curtis, S. Workshop on the radiation environment of the satellite power system (Lawrence Berkeley National Laboratory, 1978).
HaoH-YMarisHDispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphirePhys. Rev. B2001632243012001PhRvB..63v4301H10.1103/PhysRevB.63.2243011:CAS:528:DC%2BD3MXjvF2ls7o%3D
ChanJSafavi-NaeiniAHHillJTMeenehanSPainterOOptimized optomechanical crystal cavity with acoustic radiation shieldAppl. Phys. Lett.20121010811152012ApPhL.101h1115C10.1063/1.47477261:CAS:528:DC%2BC38Xht1CgtLfK
GusevVLomonosovAMRuelloPAyouchAVaudelGDepth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: TheoryJ. Appl. Phys.20111101249082011JAP...110l4908G10.1063/1.36656461:CAS:528:DC%2BC3MXhs1Cgu7jP
MatsudaOWrightOLaser picosecond acoustics in a two-layer structure with oblique probe light incidenceUltrasonics20044265365610.1016/j.ultras.2004.01.052150473621:STN:280:DC%2BD2c7lsFKksQ%3D%3D
KuriakoseMPicosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressuresUltrasonics20166925910.1016/j.ultras.2016.03.00727026585
DaiJMukundhanPKimCMarisHJAnalysis of a picosecond ultrasonic method for measurement of stress in a substrateJ. Appl. Phys.20161191057052016JAP...119j5705D10.1063/1.49435411:CAS:528:DC%2BC28XktFenuro%3D
SteigerwaldAHmeloABVargaKFeldmanLCTolkNDetermination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopyJ. Appl. Phys.20121120135142012JAP...112a3514S10.1063/1.47320721:CAS:528:DC%2BC38XpvV2ku70%3D
BaydinADepth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC measured using coherent acoustic phononsAPL Photonics201610361022016APLP....1c6102B10.1063/1.49454431:CAS:528:DC%2BC2sXhtVKgsr4%3D
NikitinSMRevealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scatteringSci. Rep.2015510.1038/srep093522579080843668611:CAS:528:DC%2BC2MXotlaisb4%3D
ZieglerJFZieglerMBiersackJ{SRIM} – the stopping and range of ions in matter (2010)Nucl. Instrum. Methods Phys. Res., Sect. B201026818182010NIMPB.268.1818Z10.1016/j.nimb.2010.02.0911:CAS:528:DC%2BC3cXmtFait70%3D
ChabanITime-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquidsRev. Sci. Instrum.2017880749042017RScI...88g4904C10.1063/1.4993132287645241:CAS:528:DC%2BC2sXhtFyqt7zN
MatsudaOLarcipreteMCLi VotiRWrightOBFundamentals of picosecond laser ultrasonicsUltrasonics201556310.1016/j.ultras.2014.06.005249981191:CAS:528:DC%2BC2cXhtFWgtrbK
TasGLoomisJJMarisHJBailesAASeiberlingLEPicosecond ultrasonics study of the modification of interfacial bonding by ion implantationAppl. Phys. Lett.19987222351998ApPhL..72.2235T10.1063/1.1212761:CAS:528:DyaK1cXisVaksbs%3D
KhafizovMSubsurface imaging of grain microstructure using picosecond ultrasonicsActa Mater.201611220910.1016/j.actamat.2016.04.0031:CAS:528:DC%2BC28XmsVegt7Y%3D
ScherbakovAVPicosecond opto-acoustic interferometry and polarimetry in high-index GaAsOpt. Express201321164732013OExpr..2116473S10.1364/OE.21.016473239384981:CAS:528:DC%2BC3sXht1yqtrrO
HeCAcoustic waves undetectable by transient reflectivity measurementsPhys. Rev. B2017951843022017PhRvB..95r4302H10.1103/PhysRevB.95.184302
GregoryJSteigerwaldATakahashiHHmeloATolkNIon implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopyAppl. Phys. Lett.20121011819042012ApPhL.101r1904G10.1063/1.47656471:CAS:528:DC%2BC38XhsF2qu7zO
ThomsenCGrahnHTMarisHJTaucJSurface generation and detection of phonons by picosecond light pulsesPhys. Rev. B19863441291986PhRvB..34.4129T10.1103/PhysRevB.34.41291:CAS:528:DyaL28Xls1Wrsr8%3D
JohnstonARaxBProton damage in linear and digital optocouplersIEEE Trans. Nucl. Sci.2000476752000ITNS...47..675J10.1109/23.856497
PéronneEPerrinBGeneration and detection of acoustic solitons in crystalline slabs by laser ultrasonicsUltrasonics200644e120310.1016/j.ultras.2006.05.07216814345
MechriCDepth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometryAppl. Phys. Lett.2009950919072009ApPhL..95i1907M10.1063/1.32200631:CAS:528:DC%2BD1MXhtV2qtLzL
RossignolCRampnouxJDehouxTDilhaireSAudoinBPicosecond ultrasonics time resolved spectroscopy using a photonic crystal fiberUltrasonics200644e128310.1016/j.ultras.2006.05.082168063561:CAS:528:DC%2BD28XktVSit78%3D
Adachi, S. Elastooptic and electrooptic effects (World Scietific, 1994).
HudertFBartelsADekorsyTKöhlerKInfluence of doping profiles on coherent acoustic phonon detection and generation in semiconductorsJ. Appl. Phys.20081041235092008JAP...104l3509H10.1063/1.30331401:CAS:528:DC%2BD1cXhsFartLjE
LomonosovAMNanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low- k Material Thin FilmACS Nano20126141010.1021/nn204210u222116671:CAS:528:DC%2BC38Xpt1ag
References_xml – reference: Schimmerling, W. & Curtis, S. Workshop on the radiation environment of the satellite power system (Lawrence Berkeley National Laboratory, 1978).
– reference: HudertFBartelsADekorsyTKöhlerKInfluence of doping profiles on coherent acoustic phonon detection and generation in semiconductorsJ. Appl. Phys.20081041235092008JAP...104l3509H10.1063/1.30331401:CAS:528:DC%2BD1cXhsFartLjE
– reference: MatsudaOWrightOLaser picosecond acoustics in a two-layer structure with oblique probe light incidenceUltrasonics20044265365610.1016/j.ultras.2004.01.052150473621:STN:280:DC%2BD2c7lsFKksQ%3D%3D
– reference: MatsudaOLarcipreteMCLi VotiRWrightOBFundamentals of picosecond laser ultrasonicsUltrasonics201556310.1016/j.ultras.2014.06.005249981191:CAS:528:DC%2BC2cXhtFWgtrbK
– reference: KhafizovMSubsurface imaging of grain microstructure using picosecond ultrasonicsActa Mater.201611220910.1016/j.actamat.2016.04.0031:CAS:528:DC%2BC28XmsVegt7Y%3D
– reference: ZieglerJFZieglerMBiersackJ{SRIM} – the stopping and range of ions in matter (2010)Nucl. Instrum. Methods Phys. Res., Sect. B201026818182010NIMPB.268.1818Z10.1016/j.nimb.2010.02.0911:CAS:528:DC%2BC3cXmtFait70%3D
– reference: Renosi, P., Sapriel, J. & Djafari-Rouhani, B. Resonant acousto-optic effects in InP and GaAs and related devices. In 5th International Conference on Indium Phosphide and Related Materials, 592–595 (IEEE, 1993).
– reference: HeCAcoustic waves undetectable by transient reflectivity measurementsPhys. Rev. B2017951843022017PhRvB..95r4302H10.1103/PhysRevB.95.184302
– reference: KuriakoseMPicosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressuresUltrasonics20166925910.1016/j.ultras.2016.03.00727026585
– reference: RossignolCRampnouxJDehouxTDilhaireSAudoinBPicosecond ultrasonics time resolved spectroscopy using a photonic crystal fiberUltrasonics200644e128310.1016/j.ultras.2006.05.082168063561:CAS:528:DC%2BD28XktVSit78%3D
– reference: DaiJMukundhanPKimCMarisHJAnalysis of a picosecond ultrasonic method for measurement of stress in a substrateJ. Appl. Phys.20161191057052016JAP...119j5705D10.1063/1.49435411:CAS:528:DC%2BC28XktFenuro%3D
– reference: SteigerwaldAHmeloABVargaKFeldmanLCTolkNDetermination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopyJ. Appl. Phys.20121120135142012JAP...112a3514S10.1063/1.47320721:CAS:528:DC%2BC38XpvV2ku70%3D
– reference: JohnstonARaxBProton damage in linear and digital optocouplersIEEE Trans. Nucl. Sci.2000476752000ITNS...47..675J10.1109/23.856497
– reference: TasGLoomisJJMarisHJBailesAASeiberlingLEPicosecond ultrasonics study of the modification of interfacial bonding by ion implantationAppl. Phys. Lett.19987222351998ApPhL..72.2235T10.1063/1.1212761:CAS:528:DyaK1cXisVaksbs%3D
– reference: SteigerwaldASemiconductor point defect concentration profiles measured using coherent acoustic phonon wavesAppl. Phys. Lett.2009941119102009ApPhL..94k1910S10.1063/1.30993411:CAS:528:DC%2BD1MXjsFSltrs%3D
– reference: RuelloPGusevVEPhysical mechanisms of coherent acoustic phonons generation by ultrafast laser actionUltrasonics2015562110.1016/j.ultras.2014.06.004250389581:CAS:528:DC%2BC2cXht1Wmu7rM
– reference: ThomsenCGrahnHTMarisHJTaucJSurface generation and detection of phonons by picosecond light pulsesPhys. Rev. B19863441291986PhRvB..34.4129T10.1103/PhysRevB.34.41291:CAS:528:DyaL28Xls1Wrsr8%3D
– reference: Pine, A. S. Brillouin Scattering in Semiconductors (Springer Berlin Heidelberg, 1975).
– reference: BaydinADepth dependent modification of optical constants arising from H+ implantation in n-type 4H-SiC measured using coherent acoustic phononsAPL Photonics201610361022016APLP....1c6102B10.1063/1.49454431:CAS:528:DC%2BC2sXhtVKgsr4%3D
– reference: GregoryJSteigerwaldATakahashiHHmeloATolkNIon implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopyAppl. Phys. Lett.20121011819042012ApPhL.101r1904G10.1063/1.47656471:CAS:528:DC%2BC38XhsF2qu7zO
– reference: ChanJSafavi-NaeiniAHHillJTMeenehanSPainterOOptimized optomechanical crystal cavity with acoustic radiation shieldAppl. Phys. Lett.20121010811152012ApPhL.101h1115C10.1063/1.47477261:CAS:528:DC%2BC38Xht1CgtLfK
– reference: BalramKCDavançoMLimJYSongJDSrinivasanKMoving boundary and photoelastic coupling in GaAs optomechanical resonatorsOptica2014141410.1364/OPTICA.1.0004141:CAS:528:DC%2BC2MXlsVehsbY%3D
– reference: GusevVLomonosovAMRuelloPAyouchAVaudelGDepth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: TheoryJ. Appl. Phys.20111101249082011JAP...110l4908G10.1063/1.36656461:CAS:528:DC%2BC3MXhs1Cgu7jP
– reference: Adachi, S. Elastooptic and electrooptic effects (World Scietific, 1994).
– reference: PéronneEPerrinBGeneration and detection of acoustic solitons in crystalline slabs by laser ultrasonicsUltrasonics200644e120310.1016/j.ultras.2006.05.07216814345
– reference: HaoH-YMarisHDispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphirePhys. Rev. B2001632243012001PhRvB..63v4301H10.1103/PhysRevB.63.2243011:CAS:528:DC%2BD3MXjvF2ls7o%3D
– reference: LomonosovAMNanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low- k Material Thin FilmACS Nano20126141010.1021/nn204210u222116671:CAS:528:DC%2BC38Xpt1ag
– reference: BourdarieSXapsosMThe near-earth space radiation environmentIEEE Trans. Nucl. Sci.20085518102008ITNS...55.1810B10.1109/TNS.2008.20014091:CAS:528:DC%2BD1cXht1Kqt7vO
– reference: ChabanITime-domain Brillouin scattering for the determination of laser-induced temperature gradients in liquidsRev. Sci. Instrum.2017880749042017RScI...88g4904C10.1063/1.4993132287645241:CAS:528:DC%2BC2sXhtFyqt7zN
– reference: MechriCDepth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometryAppl. Phys. Lett.2009950919072009ApPhL..95i1907M10.1063/1.32200631:CAS:528:DC%2BD1MXhtV2qtLzL
– reference: ScherbakovAVPicosecond opto-acoustic interferometry and polarimetry in high-index GaAsOpt. Express201321164732013OExpr..2116473S10.1364/OE.21.016473239384981:CAS:528:DC%2BC3sXht1yqtrrO
– reference: NikitinSMRevealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scatteringSci. Rep.2015510.1038/srep093522579080843668611:CAS:528:DC%2BC2MXotlaisb4%3D
SSID ssj0000529419
Score 2.2579181
Snippet The photoelastic phenomenon has been widely investigated as a fundamental elastooptical property of solids. This effect has been applied extensively to study...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 15150
SubjectTerms 140/125
639/766/119/1000
639/766/400/584
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KRfAiPvHNCt50NfvK4yBSxFqEigcDvYXdzQaFmtQmhfbfO5vHQelFCOQyuXzfTuYbZmcGoSvK_cxNXSeSS0NEpFMSKZOSzBidpaCZw8g1OI9f_VEsXiZy0kPduqMWwHJtauf2ScXz6e3ye_UADn_ftIyHdyUEIdcoBv9b0PseJ6ApNyAy-e6Uj1u538z6ZpGgUds7s_7TX0rzT3G0jjnDHbTdikU8aNjdRT2b76HNZn3kah_FwDGefRRVYUEDgw02ha1HQkAkwW-U4SLDo2v8-TWbOgBT_KwGJVbwYBfPHCfOJLXuTge8cndB4wDFw6f3xxFp1ySQGfVZRYJUsCBTTIbaY4Z5kKIo43HFM8qY5lyblJlUCsUZEMY9obPACCmsyhSH9I0fon5e5PYIYct9FUqQRDRSQoFvBzpgUmkbaOMqnMfosgMngWPoagsqt8WiTJwjM1Arkh6jmw61pKMzqUvdPEwavBPAO6nxTpYn_zM_RVusZosSLzpD_Wq-sOcgCyp9UXP9A1M-s00
  priority: 102
  providerName: Scholars Portal
Title The photoelastic coefficient P12 of H+ implanted GaAs as a function of defect density
URI https://link.springer.com/article/10.1038/s41598-017-14903-x
https://www.proquest.com/docview/1963271051
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zQ_BFvOK8jAi-abDNpZfHOjbHYGOog72VJE1R0Ha4DvTfe5K1guKLUJqHnkL5zknOl55LELryWZDbrutEMKEJj1VGYqkzkmut8gw4cxTbAufJNBjN-XghFi1Em1oYl7TvWlq6ZbrJDrtdgaOxxWCwpgKn9xgB3tixrdttv_x-0P_-r2IjV9yP6_oYj0V_vPqDTf4KgDq_MtxDuzUhxMnmE_ZRyxQHaHtzROTnIZqDHvHyuaxKAzwXZLAujWv7AN4Cz3yKyxyPrvHL2_LVgpThe5mssIQLW59lcbcimbF5GzAUNgnjCM2Hg6f-iNRHIZClH9CKhBmnYS6piJRHNfVgGyK1xyTLfUoVY0pnVGeCS0ZBKczjKg81F9zIXDLYorFj1C7KwpwgbFggIwG0x48llzB_QxVSIZUJlbZRzC66bMBJwdRs_EAWplyvUjtZKTAS4XfRTYNaWts8PLbhbBalG7xTwDt1eKcfp_8TP0M71GnLJ158jtrV-9pcgOuvVA9thYuwhzpJMn4cw3g3mM4ees4Cem47DfcJj74ADmCvgg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jQ_RFvOK8RvBNg20uvTwWcda5DcEN9laSNEFB2-E60H_vSdcJii9CoQ89hfKdJOdLv3NOELrwWWBd13UimNCExyonsdQ5sVormwNnjmJX4DwcBemE96di2kJ0VQtTJ-3XLS3rZXqVHXY9h0DjisFgTQVO7zECvLHjmrHTNuokSf-p__1nxWlX3I-bChmPRX-8_INP_pJA68jS20KbDSXEyfIjtlHLFDtobXlI5OcumoAn8ey5rEoDTBdssC5N3fgB4gV-9CkuLU4v8cvb7NXBlOM7mcyxhAu7qOWQdya5cZkbcCtcGsYemvRuxzcpaQ5DIDM_oBUJc05DK6mIlEc19WAjIrXHJLM-pYoxpXOqc8Elo-AW5nFlQ80FN9JKBps0to_aRVmYA4QNC2QkgPj4seQSZnCoQiqkMqHSTsfsovMVOBkMNqcgyMKUi3nmpisFTiL8LrpaoZY1ox4eO0GbRdkS7wzwzmq8s4_D_5mfofV0PBxkg_vRwxHaoLXnfOLFx6hdvS_MCRCBSp02nv8CK0Ct8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qRfEiPrE-V_Cmq8k-8jiWaq2v0oOF3sI-UdCk2Bbqv3c2TQTFixDIIRMI3-zufJv5Zhahs5BFznddJ4IJTXiqDEmlNsRprZwBzpykvsD5qR_1hvx-JEYNFNW1MKVov2xpWS7TtTrsagKBxheDwZoKnD5gZH45Nm4JLQPfDryUrxN1vv-t-OwVD9OqRiZgyR-v_2CUv5KgZWzpbqD1ihTi9uIzNlHD5ltoZXFM5Oc2GoIv8filmBYWuC7YYF3YsvUDRAw8CCkuHO6d49f38ZsHyuBb2Z5gCRf2cctj702M9doNuOVeiLGDht2b506PVMchkHEY0SmJDaexk1QkKqCaBrAVkTpgkrmQUsWY0oZqI7hkFBzDAq5crLngVjrJYJvGdlEzL3K7h7BlkUwEUJ8wlVzCHI5VTIVUNlbaZzJb6LQGJ4Ph5nMIMrfFbJL5CUuBlYiwhS5q1LJq3MNjn9JmSbbAOwO8sxLvbL7_P_MTtDq47maPd_2HA7RGS8eFJEgPUXP6MbNHwASm6rh0-xfVnK2e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photoelastic+coefficient+P12+of+H%2B+implanted+GaAs+as+a+function+of+defect+density&rft.jtitle=Scientific+reports&rft.au=Baydin%2C+Andrey&rft.au=Krzyzanowska%2C+Halina&rft.au=Gatamov%2C+Rustam&rft.au=Garnett%2C+Joy&rft.date=2017-11-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-017-14903-x&rft.externalDocID=10_1038_s41598_017_14903_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon