Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets

Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judg...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Information Retrieval Vol. 12657; pp. 216 - 224
Main Authors Bigdeli, Amin, Arabzadeh, Negar, Zihayat, Morteza, Bagheri, Ebrahim
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
Abstract Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judgements. While not explored in the past, we submit that it is important to understand and measure the extent to which gender biases may be presented in information retrieval relevance judgements primarily because relevance judgements are not only the primary source for evaluating IR techniques but are also widely used for training end-to-end neural ranking methods. As such, the presence of bias in relevance judgements would immediately find its way into how retrieval methods operate in practice. Based on a fine-tuned BERT model, we show how queries can be labelled for gender at scale based on which we label MS MARCO queries. We then show how different psychological characteristics are exhibited within documents associated with gendered queries within the relevance judgement datasets. Our observations show that stereotypical biases are prevalent in relevance judgement documents.
AbstractList Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judgements. While not explored in the past, we submit that it is important to understand and measure the extent to which gender biases may be presented in information retrieval relevance judgements primarily because relevance judgements are not only the primary source for evaluating IR techniques but are also widely used for training end-to-end neural ranking methods. As such, the presence of bias in relevance judgements would immediately find its way into how retrieval methods operate in practice. Based on a fine-tuned BERT model, we show how queries can be labelled for gender at scale based on which we label MS MARCO queries. We then show how different psychological characteristics are exhibited within documents associated with gendered queries within the relevance judgement datasets. Our observations show that stereotypical biases are prevalent in relevance judgement documents.
Author Bagheri, Ebrahim
Zihayat, Morteza
Arabzadeh, Negar
Bigdeli, Amin
Author_xml – sequence: 1
  givenname: Amin
  surname: Bigdeli
  fullname: Bigdeli, Amin
  email: abigdeli@ryerson.ca
– sequence: 2
  givenname: Negar
  surname: Arabzadeh
  fullname: Arabzadeh, Negar
– sequence: 3
  givenname: Morteza
  surname: Zihayat
  fullname: Zihayat, Morteza
– sequence: 4
  givenname: Ebrahim
  surname: Bagheri
  fullname: Bagheri, Ebrahim
BookMark eNpNkEFOwzAQRQ0URFt6Axa5gMFjO469hFJKURESgrWVunYJpE6wU8TxcVoWrGb0Z_7ozxuhgW-8RegSyBUQUlyrQmKGCSO4oJQTDBrkEZokmSVxr8ExGoIAwIxxdfJ_xlQ-QMPUU6wKzs7QCCjngqq0fo4mMX4QQmhOgAEfoqfZT1s3ofKbbG792obstiqjjVnls4V3TdiWXdX47MV2obLfZZ26OlVvbPa4W2_s1vouuyu7ZOriBTp1ZR3t5K-O0dv97HX6gJfP88X0ZolbyKXErlwRyl0foyCGG8WVyJVYC-DOSHCrnCgLikhiFDhqC0epBGlUYSQVrmBjRA93Y9tHt0GvmuYzaiC6B6gTDc10YqD3sHQPMJn4wdSG5mtnY6dt7zLpgVDW5r1sOxuiFjkDwZmmkGvKBfsFo4Ju4w
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 004
DOI 10.1007/978-3-030-72240-1_18
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030722401
3030722406
EISSN 1611-3349
Editor Moens, Marie-Francine
Perego, Raffaele
Sebastiani, Fabrizio
Hiemstra, Djoerd
Mothe, Josiane
Potthast, Martin
Editor_xml – sequence: 1
  fullname: Moens, Marie-Francine
– sequence: 1
  givenname: Djoerd
  orcidid: 0000-0003-4967-2900
  surname: Hiemstra
  fullname: Hiemstra, Djoerd
  email: djoerd.hiemstra@ru.nl
– sequence: 2
  fullname: Perego, Raffaele
– sequence: 2
  givenname: Marie-Francine
  orcidid: 0000-0002-3732-9323
  surname: Moens
  fullname: Moens, Marie-Francine
  email: sien.moens@kuleuven.be
– sequence: 3
  fullname: Sebastiani, Fabrizio
– sequence: 3
  givenname: Josiane
  orcidid: 0000-0001-9273-2193
  surname: Mothe
  fullname: Mothe, Josiane
  email: josiane.mothe@irit.fr
– sequence: 4
  fullname: Hiemstra, Djoerd
– sequence: 4
  givenname: Raffaele
  orcidid: 0000-0001-7189-4724
  surname: Perego
  fullname: Perego, Raffaele
  email: raffaele.perego@isti.cnr.it
– sequence: 5
  fullname: Mothe, Josiane
– sequence: 5
  givenname: Martin
  orcidid: 0000-0003-2451-0665
  surname: Potthast
  fullname: Potthast, Martin
  email: martin.potthast@uni-leipzig.de
– sequence: 6
  fullname: Potthast, Martin
– sequence: 6
  givenname: Fabrizio
  orcidid: 0000-0003-4221-6427
  surname: Sebastiani
  fullname: Sebastiani, Fabrizio
  email: fabrizio.sebastiani@isti.cnr.it
EndPage 224
ExternalDocumentID EBC6531643_215_246
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACNBG
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TGIZN
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Y
Z83
Z84
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p1588-fab024f002570c4c9496596d614fc81fb509e19080c91f2e7f22818c97c826f73
ISBN 9783030722395
3030722392
ISSN 0302-9743
IngestDate Wed Nov 06 06:49:52 EST 2024
Fri Jul 26 01:16:19 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1588-fab024f002570c4c9496596d614fc81fb509e19080c91f2e7f22818c97c826f73
OCLC 1244629161
PQID EBC6531643_215_246
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_030_72240_1_18
proquest_ebookcentralchapters_6531643_215_246
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Information Systems and Applications, incl. Internet/Web, and HCI
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part II
PublicationTitle Advances in Information Retrieval
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002501314
ssj0002792
Score 2.0239718
Snippet Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational...
SourceID springer
proquest
SourceType Publisher
StartPage 216
Title Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6531643&ppg=246
http://link.springer.com/10.1007/978-3-030-72240-1_18
Volume 12657
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWeql66FulL_nQG0q1cR7OHnqAaiuEYA8VVKgXy3ZsyIGAuqES-2f4qx17Yie7pQd6iVZR4k3mc8Yz429mCPkk83SqOXxIMFdYkldKJdJwnqiiLioLa671Md3jRXlwmh-eFWeTyd2ItXTTqc96dW9eyf-gCucAV5cl-wBk46BwAn4DvnAEhOG4Yfyuh1mRXoy7957P2icVeSy_-x5Zv2WkTuw357XBLOi9y6YdIJZqJWvj4yoLcy4jTfdncyFvJfI4HBd3NTjt0rFC_FBzcLMvmsvxlBv4fNigbne_gTXy3w_omHjGv4RLDkESDkzDDm7C-lJeimb55ajf6FhcdThc6EURVNM4dsHSjdhFiF1uRD-HANyas5s5fQTWDDblDElfoNDBJUIdaVCHl64yY4aVUKNeLkdLPMO07b9WjzFhBEZOuLN3klSk1RbZ4jNQoI_25odHP2IQD-Zy6sv_90u_q8aI21b4VC6ZKDw1w3JPw1uMEjnv-8s1l2djl94bPyfPyBOXEENdpgrI7zmZmPYFeRogoD0EL8lxxJ8i_hTxp01LR_jTiD-N-NOIPw34vyKn3-YnXw-SvltHcp0W8GFaqcDes04ofKpzPfOdCMoa7D-rq9QqME0NmJ_VVM9Sywy3zFUi0zOuwcW1PHtNttur1rwhlBXWWK5rZUowsopKVZLV4GhkJTgMOs93SBJEIzynoCcyaxTEUpSwsoCpLcCeFSwvd8hukJ9wly9FKNYNgheZAMELL3jhBP_2QVe_I4-Hmf2ebHe_bswHsFM79bGfLX8ASHaKYw
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Information+Retrieval&rft.au=Bigdeli%2C+Amin&rft.au=Arabzadeh%2C+Negar&rft.au=Zihayat%2C+Morteza&rft.au=Bagheri%2C+Ebrahim&rft.atitle=Exploring+Gender+Biases+in+Information+Retrieval+Relevance+Judgement+Datasets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030722395&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1007%2F978-3-030-72240-1_18
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6531643-l.jpg