Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets
Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judg...
Saved in:
Published in | Advances in Information Retrieval Vol. 12657; pp. 216 - 224 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judgements. While not explored in the past, we submit that it is important to understand and measure the extent to which gender biases may be presented in information retrieval relevance judgements primarily because relevance judgements are not only the primary source for evaluating IR techniques but are also widely used for training end-to-end neural ranking methods. As such, the presence of bias in relevance judgements would immediately find its way into how retrieval methods operate in practice. Based on a fine-tuned BERT model, we show how queries can be labelled for gender at scale based on which we label MS MARCO queries. We then show how different psychological characteristics are exhibited within documents associated with gendered queries within the relevance judgement datasets. Our observations show that stereotypical biases are prevalent in relevance judgement documents. |
---|---|
AbstractList | Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judgements. While not explored in the past, we submit that it is important to understand and measure the extent to which gender biases may be presented in information retrieval relevance judgements primarily because relevance judgements are not only the primary source for evaluating IR techniques but are also widely used for training end-to-end neural ranking methods. As such, the presence of bias in relevance judgements would immediately find its way into how retrieval methods operate in practice. Based on a fine-tuned BERT model, we show how queries can be labelled for gender at scale based on which we label MS MARCO queries. We then show how different psychological characteristics are exhibited within documents associated with gendered queries within the relevance judgement datasets. Our observations show that stereotypical biases are prevalent in relevance judgement documents. |
Author | Bagheri, Ebrahim Zihayat, Morteza Arabzadeh, Negar Bigdeli, Amin |
Author_xml | – sequence: 1 givenname: Amin surname: Bigdeli fullname: Bigdeli, Amin email: abigdeli@ryerson.ca – sequence: 2 givenname: Negar surname: Arabzadeh fullname: Arabzadeh, Negar – sequence: 3 givenname: Morteza surname: Zihayat fullname: Zihayat, Morteza – sequence: 4 givenname: Ebrahim surname: Bagheri fullname: Bagheri, Ebrahim |
BookMark | eNpNkEFOwzAQRQ0URFt6Axa5gMFjO469hFJKURESgrWVunYJpE6wU8TxcVoWrGb0Z_7ozxuhgW-8RegSyBUQUlyrQmKGCSO4oJQTDBrkEZokmSVxr8ExGoIAwIxxdfJ_xlQ-QMPUU6wKzs7QCCjngqq0fo4mMX4QQmhOgAEfoqfZT1s3ofKbbG792obstiqjjVnls4V3TdiWXdX47MV2obLfZZ26OlVvbPa4W2_s1vouuyu7ZOriBTp1ZR3t5K-O0dv97HX6gJfP88X0ZolbyKXErlwRyl0foyCGG8WVyJVYC-DOSHCrnCgLikhiFDhqC0epBGlUYSQVrmBjRA93Y9tHt0GvmuYzaiC6B6gTDc10YqD3sHQPMJn4wdSG5mtnY6dt7zLpgVDW5r1sOxuiFjkDwZmmkGvKBfsFo4Ju4w |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | FFUUA |
DEWEY | 004 |
DOI | 10.1007/978-3-030-72240-1_18 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030722401 3030722406 |
EISSN | 1611-3349 |
Editor | Moens, Marie-Francine Perego, Raffaele Sebastiani, Fabrizio Hiemstra, Djoerd Mothe, Josiane Potthast, Martin |
Editor_xml | – sequence: 1 fullname: Moens, Marie-Francine – sequence: 1 givenname: Djoerd orcidid: 0000-0003-4967-2900 surname: Hiemstra fullname: Hiemstra, Djoerd email: djoerd.hiemstra@ru.nl – sequence: 2 fullname: Perego, Raffaele – sequence: 2 givenname: Marie-Francine orcidid: 0000-0002-3732-9323 surname: Moens fullname: Moens, Marie-Francine email: sien.moens@kuleuven.be – sequence: 3 fullname: Sebastiani, Fabrizio – sequence: 3 givenname: Josiane orcidid: 0000-0001-9273-2193 surname: Mothe fullname: Mothe, Josiane email: josiane.mothe@irit.fr – sequence: 4 fullname: Hiemstra, Djoerd – sequence: 4 givenname: Raffaele orcidid: 0000-0001-7189-4724 surname: Perego fullname: Perego, Raffaele email: raffaele.perego@isti.cnr.it – sequence: 5 fullname: Mothe, Josiane – sequence: 5 givenname: Martin orcidid: 0000-0003-2451-0665 surname: Potthast fullname: Potthast, Martin email: martin.potthast@uni-leipzig.de – sequence: 6 fullname: Potthast, Martin – sequence: 6 givenname: Fabrizio orcidid: 0000-0003-4221-6427 surname: Sebastiani fullname: Sebastiani, Fabrizio email: fabrizio.sebastiani@isti.cnr.it |
EndPage | 224 |
ExternalDocumentID | EBC6531643_215_246 |
GroupedDBID | 38. AABBV AABLV ABNDO ACNBG ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TGIZN TPJZQ TSXQS Z7R Z7U Z7X Z7Y Z83 Z84 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p1588-fab024f002570c4c9496596d614fc81fb509e19080c91f2e7f22818c97c826f73 |
ISBN | 9783030722395 3030722392 |
ISSN | 0302-9743 |
IngestDate | Wed Nov 06 06:49:52 EST 2024 Fri Jul 26 01:16:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA75.5-76.95 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1588-fab024f002570c4c9496596d614fc81fb509e19080c91f2e7f22818c97c826f73 |
OCLC | 1244629161 |
PQID | EBC6531643_215_246 |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_3_030_72240_1_18 proquest_ebookcentralchapters_6531643_215_246 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Information Systems and Applications, incl. Internet/Web, and HCI |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part II |
PublicationTitle | Advances in Information Retrieval |
PublicationYear | 2021 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002501314 ssj0002792 |
Score | 2.0239718 |
Snippet | Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 216 |
Title | Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6531643&ppg=246 http://link.springer.com/10.1007/978-3-030-72240-1_18 |
Volume | 12657 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWeql66FulL_nQG0q1cR7OHnqAaiuEYA8VVKgXy3ZsyIGAuqES-2f4qx17Yie7pQd6iVZR4k3mc8Yz429mCPkk83SqOXxIMFdYkldKJdJwnqiiLioLa671Md3jRXlwmh-eFWeTyd2ItXTTqc96dW9eyf-gCucAV5cl-wBk46BwAn4DvnAEhOG4Yfyuh1mRXoy7957P2icVeSy_-x5Zv2WkTuw357XBLOi9y6YdIJZqJWvj4yoLcy4jTfdncyFvJfI4HBd3NTjt0rFC_FBzcLMvmsvxlBv4fNigbne_gTXy3w_omHjGv4RLDkESDkzDDm7C-lJeimb55ajf6FhcdThc6EURVNM4dsHSjdhFiF1uRD-HANyas5s5fQTWDDblDElfoNDBJUIdaVCHl64yY4aVUKNeLkdLPMO07b9WjzFhBEZOuLN3klSk1RbZ4jNQoI_25odHP2IQD-Zy6sv_90u_q8aI21b4VC6ZKDw1w3JPw1uMEjnv-8s1l2djl94bPyfPyBOXEENdpgrI7zmZmPYFeRogoD0EL8lxxJ8i_hTxp01LR_jTiD-N-NOIPw34vyKn3-YnXw-SvltHcp0W8GFaqcDes04ofKpzPfOdCMoa7D-rq9QqME0NmJ_VVM9Sywy3zFUi0zOuwcW1PHtNttur1rwhlBXWWK5rZUowsopKVZLV4GhkJTgMOs93SBJEIzynoCcyaxTEUpSwsoCpLcCeFSwvd8hukJ9wly9FKNYNgheZAMELL3jhBP_2QVe_I4-Hmf2ebHe_bswHsFM79bGfLX8ASHaKYw |
link.rule.ids | 782,783,787,796,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Information+Retrieval&rft.au=Bigdeli%2C+Amin&rft.au=Arabzadeh%2C+Negar&rft.au=Zihayat%2C+Morteza&rft.au=Bagheri%2C+Ebrahim&rft.atitle=Exploring+Gender+Biases+in+Information+Retrieval+Relevance+Judgement+Datasets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030722395&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=216&rft.epage=224&rft_id=info:doi/10.1007%2F978-3-030-72240-1_18 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6531643-l.jpg |