Automatic Detection of Craniomaxillofacial Anatomical Landmarks on CBCT Images Using 3D Mask R-CNN

Craniomaxillofacial (CMF) landmark localization is an important step for characterizing jaw deformities and designing surgical plans. However, due to the complexity of facial structure and the deformities of CMF patients, it is still difficult to accurately localize a large scale of landmarks simult...

Full description

Saved in:
Bibliographic Details
Published inGraph Learning in Medical Imaging Vol. 11849; pp. 130 - 137
Main Authors Lang, Yankun, Wang, Li, Yap, Pew-Thian, Lian, Chunfeng, Deng, Hannah, Thung, Kim-Han, Xiao, Deqiang, Yuan, Peng, Shen, Steve G. F., Gateno, Jaime, Kuang, Tianshu, Alfi, David M., Xia, James J., Shen, Dinggang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN303035816X
9783030358167
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-35817-4_16

Cover

Loading…
Abstract Craniomaxillofacial (CMF) landmark localization is an important step for characterizing jaw deformities and designing surgical plans. However, due to the complexity of facial structure and the deformities of CMF patients, it is still difficult to accurately localize a large scale of landmarks simultaneously. In this work, we propose a three-stage coarse-to-fine deep learning method for digitizing 105 anatomical craniomaxillofacial landmarks on cone-beam computed tomography (CBCT) images. The first stage outputs a coarse location of each landmark from a low-resolution image, which is gradually refined in the next two stages using the corresponding higher resolution images. Our method is implemented using Mask R-CNN, by also incorporating a new loss function that learns the geometrical relationships between the landmarks in the form of a root/leaf structure. We evaluate our approach on 49 CBCT scans of patients and achieve an average detection error of 1.75 ± 0.91 mm. Experimental results show that our approach overperforms the related methods in the term of accuracy.
AbstractList Craniomaxillofacial (CMF) landmark localization is an important step for characterizing jaw deformities and designing surgical plans. However, due to the complexity of facial structure and the deformities of CMF patients, it is still difficult to accurately localize a large scale of landmarks simultaneously. In this work, we propose a three-stage coarse-to-fine deep learning method for digitizing 105 anatomical craniomaxillofacial landmarks on cone-beam computed tomography (CBCT) images. The first stage outputs a coarse location of each landmark from a low-resolution image, which is gradually refined in the next two stages using the corresponding higher resolution images. Our method is implemented using Mask R-CNN, by also incorporating a new loss function that learns the geometrical relationships between the landmarks in the form of a root/leaf structure. We evaluate our approach on 49 CBCT scans of patients and achieve an average detection error of 1.75 ± 0.91 mm. Experimental results show that our approach overperforms the related methods in the term of accuracy.
Author Lang, Yankun
Wang, Li
Lian, Chunfeng
Yuan, Peng
Thung, Kim-Han
Deng, Hannah
Shen, Steve G. F.
Gateno, Jaime
Kuang, Tianshu
Yap, Pew-Thian
Xiao, Deqiang
Xia, James J.
Alfi, David M.
Shen, Dinggang
Author_xml – sequence: 1
  givenname: Yankun
  surname: Lang
  fullname: Lang, Yankun
– sequence: 2
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 3
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
– sequence: 4
  givenname: Chunfeng
  surname: Lian
  fullname: Lian, Chunfeng
– sequence: 5
  givenname: Hannah
  surname: Deng
  fullname: Deng, Hannah
– sequence: 6
  givenname: Kim-Han
  surname: Thung
  fullname: Thung, Kim-Han
– sequence: 7
  givenname: Deqiang
  surname: Xiao
  fullname: Xiao, Deqiang
– sequence: 8
  givenname: Peng
  surname: Yuan
  fullname: Yuan, Peng
– sequence: 9
  givenname: Steve G. F.
  surname: Shen
  fullname: Shen, Steve G. F.
– sequence: 10
  givenname: Jaime
  surname: Gateno
  fullname: Gateno, Jaime
– sequence: 11
  givenname: Tianshu
  surname: Kuang
  fullname: Kuang, Tianshu
– sequence: 12
  givenname: David M.
  surname: Alfi
  fullname: Alfi, David M.
– sequence: 13
  givenname: James J.
  surname: Xia
  fullname: Xia, James J.
  email: jxia@houstonmethodist.org
– sequence: 14
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
BookMark eNo1kMlOAzEQRM0qEsgfcPAPGLwvxzCsUgAJgcTNahsPDJnMhPEg8fk4LKcuVVe1Wm-Kdru-SwgdM3rCKDWnzlgiCBWUCGWZIdIzvYVmxRbF_PHkNpowzRgRQrodNP1f6OddNCmaE2ek2EdTxrhx0lJpDtAs53dKKedaMS4nKMw_x34FYxPxeRpTHJu-w32NqwG6piy-mrbta4gNtHjeQck2scgFdC8rGJYZl3h1Vj3imxW8poyfctO9YnGObyEv8QOp7u6O0F4NbU6zv3mIni4vHqtrsri_uqnmC7JmymqSlOVC0BB0si5oExRop2ICoyRV5iWExGvLpZFaUgbJQa2ptMJoAxBDFIeI_97N66E8kQYf-n6ZPaN-g9QXdl74Asb_4PMbpKUkf0vrof_4THn0adOKqRsHaOMbrMc0ZK-cMU5bz5TzTFLxDbSTdU0
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-35817-4_16
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030358174
3030358178
EISSN 1611-3349
Editor Liu, Mingxia
Zhang, Daoqiang
Zhou, Luping
Jie, Biao
Editor_xml – sequence: 1
  fullname: Liu, Mingxia
– sequence: 2
  fullname: Zhang, Daoqiang
– sequence: 3
  fullname: Zhou, Luping
– sequence: 4
  fullname: Jie, Biao
EndPage 137
ExternalDocumentID EBC5977968_159_140
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p1586-e582330bb6e89b67b5a695cea754057dbbe2f824746401ae9af60483767aacbc3
ISBN 303035816X
9783030358167
ISSN 0302-9743
IngestDate Tue Jul 29 19:40:19 EDT 2025
Thu May 29 00:10:06 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1586-e582330bb6e89b67b5a695cea754057dbbe2f824746401ae9af60483767aacbc3
OCLC 1127948047
PQID EBC5977968_159_140
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_030_35817_4_16
proquest_ebookcentralchapters_5977968_159_140
PublicationCentury 2000
PublicationDate 2019
20191114
PublicationDateYYYYMMDD 2019-01-01
2019-11-14
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
PublicationTitle Graph Learning in Medical Imaging
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002265124
ssj0002792
Score 1.6070913
Snippet Craniomaxillofacial (CMF) landmark localization is an important step for characterizing jaw deformities and designing surgical plans. However, due to the...
SourceID springer
proquest
SourceType Publisher
StartPage 130
Title Automatic Detection of Craniomaxillofacial Anatomical Landmarks on CBCT Images Using 3D Mask R-CNN
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5977968&ppg=140
http://link.springer.com/10.1007/978-3-030-35817-4_16
Volume 11849
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe6ckEceIvxkg_cIqMkTuzkwGG0Q2PqekAdjFNkJ46ouibTmgrEP8S_yedX-qCXcYlSx3Kc7_vV_t5G6F0MYi5sVAkpU9BVk1LmJEvTipQ1r3nIJaBMZyNfTNnZZXJ-lV4NBn-2opbWnXxf_j6YV_I_XIU24KvOkr0DZ_tBoQHugb9wBQ7DdU_43TWz2mr9utS0r49q8lK80-Xz0hw91MfaOJPwd9Es1j0WvrnWybz_44sbG7H7k8x-bKFmMhfOM79uauXHdTHO6661RV_HqlOlFz9HsAPO4cGv-fV1Wwtjlj9pQL9fOst5Uy3F7cK4KkYfRzMzZbUKbAADHQcXYrUIvpDR1JrPNDXV6sPEOTymbWfiyAJ_JoVforZtGFGuk_mif22Ye1bQjSFuR-mFTTfUVdvsMR4--QsWdlCN7Fqp7FrOdIVGaiuiuvU5ck4g5X7xg7vIduAIjEz02zhJiogdoSOepUN07-T0fPK1N-aBDAuCU9KLALoqo3Vf2VnppCI_a1f2afMVWwmdh165o_rseeuNEDR7hB7oxBisM1aAfo_RQDVP0EPPAuxY8BTJHhS4BwVua3wAFHgDCtyDAkN3DQpsQYENKDAdYw0KbEDxDF1-Op2Nzog7yoPcRGnGiEqzmNJQSqayXDIuU8HytFSCG42hklLFdRYnPGGg8AuVi5qZww4YF6KUJX2Ohk3bqBcIA-nKOqRVxpiWnTMZ0yqKVRRKGtdRwo8R8fQqTMCBi3IuLXVWha64mLOsAEEeFN_wGAWeqIXuvip8JW_gRkEL4EZhuFFobry8U-9X6P4G7q_RsLtdqzcgxHbyrYPQXxcqkLU
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graph+Learning+in+Medical+Imaging&rft.au=Lang%2C+Yankun&rft.au=Wang%2C+Li&rft.au=Yap%2C+Pew-Thian&rft.au=Lian%2C+Chunfeng&rft.atitle=Automatic+Detection+of+Craniomaxillofacial+Anatomical+Landmarks+on+CBCT+Images+Using+3D+Mask+R-CNN&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-11-14&rft.pub=Springer+International+Publishing&rft.isbn=9783030358167&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=130&rft.epage=137&rft_id=info:doi/10.1007%2F978-3-030-35817-4_16
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5977968-l.jpg