Stacking-Based Ensemble Learning Method for House Price Prediction

It is difficult for the empirical prediction to provide accurate prediction results for house price due to its frequent fluctuation. Motivated by recent developments and advantages of emerging machine learning algorithms, this paper proposes a stacking model to improve the prediction accuracy of hou...

Full description

Saved in:
Bibliographic Details
Published inSoftware Engineering Application in Informatics Vol. 232; pp. 224 - 237
Main Authors Liu, Yuanning, Wu, Yifan, Su, Linlin, Li, Wenxuan, Lei, Jianjun
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Networks and Systems
Subjects
Online AccessGet full text
ISBN9783030903176
3030903176
ISSN2367-3370
2367-3389
DOI10.1007/978-3-030-90318-3_22

Cover

Abstract It is difficult for the empirical prediction to provide accurate prediction results for house price due to its frequent fluctuation. Motivated by recent developments and advantages of emerging machine learning algorithms, this paper proposes a stacking model to improve the prediction accuracy of house price, which merges several outstanding base models, Bagging regression, Extra-Trees regression, XGBoost and LightGBM. Meanwhile, we analyze all the factors affecting house price and present a more practical and complex data preprocessing method to select the most contributing features by combining a creative feature engineering method. Moreover, we also use linear model as the meta model. Experimental results reveal that the proposed stacking model has high prediction accuracy and obtains the best performance over all base models and the meta model especially in predicting extreme values.
AbstractList It is difficult for the empirical prediction to provide accurate prediction results for house price due to its frequent fluctuation. Motivated by recent developments and advantages of emerging machine learning algorithms, this paper proposes a stacking model to improve the prediction accuracy of house price, which merges several outstanding base models, Bagging regression, Extra-Trees regression, XGBoost and LightGBM. Meanwhile, we analyze all the factors affecting house price and present a more practical and complex data preprocessing method to select the most contributing features by combining a creative feature engineering method. Moreover, we also use linear model as the meta model. Experimental results reveal that the proposed stacking model has high prediction accuracy and obtains the best performance over all base models and the meta model especially in predicting extreme values.
Author Li, Wenxuan
Su, Linlin
Liu, Yuanning
Wu, Yifan
Lei, Jianjun
Author_xml – sequence: 1
  givenname: Yuanning
  surname: Liu
  fullname: Liu, Yuanning
– sequence: 2
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
– sequence: 3
  givenname: Linlin
  surname: Su
  fullname: Su, Linlin
– sequence: 4
  givenname: Wenxuan
  surname: Li
  fullname: Li, Wenxuan
– sequence: 5
  givenname: Jianjun
  surname: Lei
  fullname: Lei, Jianjun
  email: leijj@cqupt.edu.cn
BookMark eNpVkNFOwzAMRQMMxDb2Bzz0BwpOnDbJI5sGQxoCib1HaeuystGWpvt_0g0h8WJb9_pa1pmwUd3UxNgthzsOoO6N0jHGgBAbQB5mK8QZmwUZg3jU8JyNBaYqRtTm4p-n0tGfp-CKTbjQqZZaor5mM-8_AUAooVHAmM3fe5fvqvojnjtPRbSsPX1le4rW5Lo66NEL9dumiMqmi1bNwVP01lX5UKmo8r5q6ht2Wbq9p9lvn7LN43KzWMXr16fnxcM6bnmiRUyAWaJVVqB2jmRhSuQlcJMaofLcgTQlUWryLJTC8BJTUwpIMhn2iiLBKROns77twl_U2axpdt5ysAM0GwhYtIGBPQKyA7QQkqdQ2zXfB_K9pSGVU913bp9vXdtT522qOWgurQg5ITn-ABeka2k
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-030-90318-3_22
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030903183
3030903184
EISSN 2367-3389
Editor Silhavy, Radek
Prokopova, Zdenka
Silhavy, Petr
Editor_xml – sequence: 1
  fullname: Prokopova, Zdenka
– sequence: 2
  fullname: Silhavy, Radek
– sequence: 3
  fullname: Silhavy, Petr
EndPage 237
ExternalDocumentID EBC6810814_218_241
GroupedDBID 38.
AABBV
ABIKC
ACWLQ
AEKFX
AESKO
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
FFUUA
GWFKG
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-p1582-e03b587bd38aae4d9f31f0196927cca049fee69cbe69d91f369f205b4f31dd53
ISBN 9783030903176
3030903176
ISSN 2367-3370
IngestDate Tue Jul 29 20:28:15 EDT 2025
Thu May 29 01:18:44 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1582-e03b587bd38aae4d9f31f0196927cca049fee69cbe69d91f369f205b4f31dd53
OCLC 1286848438
PQID EBC6810814_218_241
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_030_90318_3_22
proquest_ebookcentralchapters_6810814_218_241
PublicationCentury 2000
PublicationDate 2021
20211117
PublicationDateYYYYMMDD 2021-01-01
2021-11-17
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Networks and Systems
PublicationSeriesTitleAlternate Lect. Notes in Networks, Syst.
PublicationSubtitle Proceedings of 5th Computational Methods in Systems and Software 2021, Vol. 1
PublicationTitle Software Engineering Application in Informatics
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Gomide, Fernando
Pedrycz, Witold
Kaynak, Okyay
Liu, Derong
Polycarpou, Marios M.
Kacprzyk, Janusz
Wang, Jun
Rudas, Imre J.
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
– sequence: 2
  givenname: Fernando
  surname: Gomide
  fullname: Gomide, Fernando
– sequence: 3
  givenname: Okyay
  surname: Kaynak
  fullname: Kaynak, Okyay
– sequence: 4
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
– sequence: 5
  givenname: Witold
  surname: Pedrycz
  fullname: Pedrycz, Witold
– sequence: 6
  givenname: Marios M.
  surname: Polycarpou
  fullname: Polycarpou, Marios M.
– sequence: 7
  givenname: Imre J.
  surname: Rudas
  fullname: Rudas, Imre J.
– sequence: 8
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
SSID ssj0002728320
Score 1.6399678
Snippet It is difficult for the empirical prediction to provide accurate prediction results for house price due to its frequent fluctuation. Motivated by recent...
SourceID springer
proquest
SourceType Publisher
StartPage 224
SubjectTerms House price prediction
Machine learning
Regression model
Stacking ensemble model
Title Stacking-Based Ensemble Learning Method for House Price Prediction
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6810814&ppg=241
http://link.springer.com/10.1007/978-3-030-90318-3_22
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCuCAOlJcoLcgHbpWreL3PQw8UFUUQyqFB9Gatd20pEk0QuysQv4MfzIwf-wi9lIu1cazYO58znhnPg5A3VQ5fJCZhSqucAZdUrFDwfxQ6jlQcm4xr621xmS6_xB-uk-vZ7M_Ia6lr1Wn1-9a4kv9BFfoAV4ySvQOy_Y9CBzwDvtACwtDuCb9TM6sPrDXtT_TbGqUUdEKls8KhJcMHG7Ujl_bVprNst3PFinqm7Ho3ZtgtV51X2r9tBr8de_n_VW9_dWGgX01bVmh1Z-dwLNawpkbfYFDWKphePtlS1darcbnrGn1iC86jC0i9qfrdgWTTzdnK32xc7lrrMIZxyehB5hJKj7Ose4NFxDFyz8VnTgyWeybPweo20XAFXgEB43FFYhxjxKRzTAhXcORUj_tcOaLAjF10tj_XI5dc5p8jY-wlApMxnA2eZQQH-70sj-fk_tuLq4-fe8tdlGF5p4WtWugXgkFD_UJdWqfh8yhg87ZZJqrN3m28FXLWB-QhBr5QjEgBkj0mM719Qh6Fsh_UnwJPyfkUaxqwpgFr6rCmgDW1WFOLNR2wfkbW7y_W75bMl-Jg33kCOpheCJXkmapFXpY6rgsjuLGplaIMeAComUbrtKgUNHXBjUgLEy0SFcO4uk7EczLf7rb6BaEK9AMjtChFmsclBw260gvDKwWCecq5OSQskENafwHvpFy5l28kJtDLeSxBNpUgfh6Sk0AzicMbGRJxA7GlkEBsaYktkdgv7zT6iDwYNvAxmbc_Ov0KZNBWvfab4i9CFoBx
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Software+Engineering+Application+in+Informatics&rft.au=Liu%2C+Yuanning&rft.au=Wu%2C+Yifan&rft.au=Su%2C+Linlin&rft.au=Li%2C+Wenxuan&rft.atitle=Stacking-Based+Ensemble+Learning+Method+for+House+Price+Prediction&rft.series=Lecture+Notes+in+Networks+and+Systems&rft.date=2021-11-17&rft.pub=Springer+International+Publishing&rft.isbn=9783030903176&rft.issn=2367-3370&rft.eissn=2367-3389&rft.spage=224&rft.epage=237&rft_id=info:doi/10.1007%2F978-3-030-90318-3_22
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6810814-l.jpg