A supersolutions perspective on hypercontractivity

The purpose of this article is to expose an algebraic closure property of supersolutions to certain diffusion equations. This closure property quickly gives rise to a monotone quantity which generates a hypercontractivity inequality. Our abstract argument applies to a general Markov semigroup whose...

Full description

Saved in:
Bibliographic Details
Published inAnnali di matematica pura ed applicata Vol. 199; no. 5; pp. 2105 - 2116
Main Authors Aoki, Yosuke, Bennett, Jonathan, Bez, Neal, Machihara, Shuji, Matsuura, Kosuke, Shiraki, Shobu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this article is to expose an algebraic closure property of supersolutions to certain diffusion equations. This closure property quickly gives rise to a monotone quantity which generates a hypercontractivity inequality. Our abstract argument applies to a general Markov semigroup whose generator is a diffusion and satisfies a curvature condition.
AbstractList The purpose of this article is to expose an algebraic closure property of supersolutions to certain diffusion equations. This closure property quickly gives rise to a monotone quantity which generates a hypercontractivity inequality. Our abstract argument applies to a general Markov semigroup whose generator is a diffusion and satisfies a curvature condition.
Author Bennett, Jonathan
Shiraki, Shobu
Matsuura, Kosuke
Machihara, Shuji
Bez, Neal
Aoki, Yosuke
Author_xml – sequence: 1
  givenname: Yosuke
  surname: Aoki
  fullname: Aoki, Yosuke
  organization: Department of Mathematics, Saitama University
– sequence: 2
  givenname: Jonathan
  surname: Bennett
  fullname: Bennett, Jonathan
  organization: School of Mathematics, University of Birmingham
– sequence: 3
  givenname: Neal
  surname: Bez
  fullname: Bez, Neal
  email: nealbez@mail.saitama-u.ac.jp
  organization: Department of Mathematics, Saitama University
– sequence: 4
  givenname: Shuji
  surname: Machihara
  fullname: Machihara, Shuji
  organization: Department of Mathematics, Saitama University
– sequence: 5
  givenname: Kosuke
  surname: Matsuura
  fullname: Matsuura, Kosuke
  organization: Department of Mathematics, Saitama University
– sequence: 6
  givenname: Shobu
  surname: Shiraki
  fullname: Shiraki, Shobu
  organization: Department of Mathematics, Saitama University
BookMark eNpFkE1LxDAURYMoODP6B1wVXEffy0uadDkMfsGAG12HNk20w5DUphXm39txBFeXdzm8C2fJzmOKnrEbhDsE0PcZQRByEMABKmW4PmMLLNFwNBWeswWQJk6I8pItc94BoDASFkysizz1fshpP41dirk4Hr13Y_ftixSLz8NcuBTHoT523Xi4Yheh3md__Zcr9v748LZ55tvXp5fNest7VHrkMuiyBkWmdQGUI9KGmsoFB9AY3fjWkxNGiaZtsZZOm7qstAplkCGoEgKt2O3pbz-kr8nn0e7SNMR50gpJpjKGSjlTdKJyP3Txww__FII9yrEnOXaWY3_lWE0_v-5Z3w
ContentType Journal Article
Copyright Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DOI 10.1007/s10231-020-00958-7
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1618-1891
EndPage 2116
ExternalDocumentID 10_1007_s10231_020_00958_7
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 19H01796; 16K05191
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: 16H05995; 16H05995
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: European Research Council
  grantid: 307617
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AGZZO
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
ID FETCH-LOGICAL-p157t-4f76a0538dcf05c33783b9cfc00b87bede3c2852bdd1a4c78a6975f6f4ff560f3
IEDL.DBID AGYKE
ISSN 0373-3114
IngestDate Mon Nov 04 11:22:19 EST 2024
Sat Dec 16 12:07:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hypercontractivity
Supersolutions
Markov semigroup
47D07
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-4f76a0538dcf05c33783b9cfc00b87bede3c2852bdd1a4c78a6975f6f4ff560f3
PQID 2438988364
PQPubID 2043971
PageCount 12
ParticipantIDs proquest_journals_2438988364
springer_journals_10_1007_s10231_020_00958_7
PublicationCentury 2000
PublicationDate 10-2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 10-2020
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Annali di matematica pura ed applicata
PublicationTitleAbbrev Annali di Matematica
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BakryDGentilILedouxMAnalysis and Geometry of Markov Diffusion Operators2014BerlinSpringer10.1007/978-3-319-00227-9
Barthe, F.: The Brunn–Minkowski theorem and related geometric and functional inequalities. In: International Congress of Mathematicians. Eur. Math. Soc., Zürich, vol. 2, pp. 1529–1546 (2006)
BakryDÉmeryMDiffusions hypercontractives, Séminaire de Probabilités XIX1985SpringerLecture Notes in Math177206
Ledoux, M.: Remarks on Gaussian noise stability, Brascamp–Lieb and Slepian inequalities. In: Geometric aspects of functional analysis, Lecture Notes in Math. vol. 2116, pp. 309–333. Springer, Berlin (2014)
Ledoux, M.: Heat flows, geometric and functional inequalities. In: Proceedings of the International Congress of Mathematicians, vol. 4, pp. 117–135. Seoul (2014)
NelsonEThe free Markov fieldJ. Funct. Anal.19731221122710.1016/0022-1236(73)90025-6
GrossLLogarithmic Sobolev inequalitiesAm. J. Math.1975971061108342024910.2307/2373688
BennettJCarberyAChristMTaoTThe Brascamp–Lieb inequalities: finiteness, structure and extremalsGeom. Funct. Anal.20071713431415237749310.1007/s00039-007-0619-6
Hu, Y.: A unified approach to several inequalities for Gaussian and diffusion measures, Séminaire de Probabilités XXXIV. Lecture Notes in Math. vol. 1729, pp. 329–335. Springer, Berlin (2000)
Davies, E.B., Gross, L., Simon, B.: Hypercontractivity: a bibliographic review. In: Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), pp. 370–389 (1992)
BonamiAÉtude des coefficients Fourier des fonctiones de Lp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(G)$$\end{document}Ann. Inst. Fourier19702033540210.5802/aif.357
BorellCPositivity improving operators and hypercontractivityMath. Z.198218022523466169910.1007/BF01318906
BakryDBolleyFGentilIDimension dependent hypercontractivity for Gaussian kernelsProbab. Theory Relat. Fields2012154845874300056410.1007/s00440-011-0387-y
Bennett, J.: Aspects of multilinear harmonic analysis related to transversality, Harmonic analysis and partial differential equations, Contemp. Math., Amer. Math. Soc., vol. 612 pp. 1–28 Providence, RI (2014)
HuYAnalysis on Gaussian Spaces2017SingaporeWorld Scientific Publishing Co.1386.60005
LedouxMThe geometry of Markov diffusion generatorsAnn. Fac. Sci. Toulouse Math.20009305366181380410.5802/afst.962
Gross, L.: Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys. In: Diffusion, quantum theory, and radically elementary mathematics, Math. Notes vol. 47, pp. 45–73. Princeton University Press, Princeton (2006)
Tao, T.: Sharp bounds for multilinear curved Kakeya, restriction and oscillatory integral estimates away from the endpoint, arXiv:1907.11342
BakryDTransformations de Riesz pour les semigroupes symétriques, Séminaire de Probabilités XIX1985SpringerLecture Notes in Math145174
CarlenEALiebEHLossMA sharp analog of Young’s inequality on SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^N$$\end{document} and related entropy inequalitiesJ. Geom. Anal.200414487520207716210.1007/BF02922101
MatkowskiJThe converse of the Hölder inequality and its generalizationsStudia Math.1994109171182126977410.4064/sm-109-2-171-182
BennettJBezNGenerating monotone quantities for the heat equationJ. Reine Angew. Math.20197563763402644810.1515/crelle-2017-0025
BakryDÉtude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités XXI1987SpringerLecture Notes in Math137172
BennettJBezNClosure properties of solutions to heat inequalitiesJ. Geom. Anal.200919584600249656710.1007/s12220-009-9070-2
References_xml
SSID ssj0012840
Score 2.2186549
Snippet The purpose of this article is to expose an algebraic closure property of supersolutions to certain diffusion equations. This closure property quickly gives...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 2105
SubjectTerms Mathematics
Mathematics and Statistics
Title A supersolutions perspective on hypercontractivity
URI https://link.springer.com/article/10.1007/s10231-020-00958-7
https://www.proquest.com/docview/2438988364
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBN6JQqgyMpEpix48xQoUKBFMrlSmK7VhISGnVpgu_HttJGl5LpWyOIuvT-fL57r47gNtAYMYjaUNvhPmYKOxnVsAc00DynFAqqwLZVzKZ4ad5PG913K7YvclIOkf9TetmqIhvbzuWFjCfdqBXC097yePb83ibPDAe14VWELXSsRDXWpn_v_KDWf5Khrp_zMMRTBulTlVa8jHalGIkP_82btxl-8dwWHNOL6mM5AT28uIUDl62DVvXZxAl3nqzdMOzK0v0lq0K01sU3ru5r65cXbtVQtiBE-cwexhP7yd-PU7BX4YxLX2sKcnMmWNK6iCWCFGGBJdaBoFgVOQqRzJicSSUCjMsKcsIp7EmGmtteJFGF9AtFkV-CR6PlZIChUog4wQU5uahlCtkyJfimerDoAE1rc_EOo3soHXGEMF9uGtAapfb_skWqdQglTqkUnq12-vXsB85nG2cZADdcrXJbwxzKMWwtpQhdGZR8gVXtLp3
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShQAZGUiWx48dYIUqhj6mVyhTFdiwkpLRq0oVfj51HCxVLJW-xLOt0vnz3-O4AHj2BGQ-kDb0R5mKisBtbAnNIPckTQqksC2THpD_F77NwVpHCsrravU5JFpb6F9nNYBHXujsWFzCX7kMTBz4JGtDsvn4MXtbZA2Nyi9gKopY75uOKLPP_KX-g5VY2tPjJ9E5gWl-vrC356qxy0ZHfW50bd73_KRxXqNPplmpyBntJeg5Ho3XL1uwCgq6TrRbF-OxSF53FhofpzFPn03isy6Ky3XIh7MiJS5j2XibPfbcaqOAu_JDmLtaUxObVMSW1F0qEKEOCSy09TzAqEpUgGbAwEEr5MZaUxYTTUBONtTbISKMraKTzNLkGh4dKSYF8JZAxAwpzsyjlChn4pXisWtCupRpVryKLAjtqnTFEcAueaiFtPm86KFtJRUZSUSGpiN7stv0BDvqT0TAavo0Ht3BovEqvjJq0oZEvV8mdwRG5uK_U5gcEFr1q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYeCMKBTIwkjaJHT_GCiiFQsVApTJFsR0LCSmN2nTh12Mn6YOKBSFlc2TFn87O57v77gCuPYEZD6R1vRHmYqKwG1sBc0g9yRNCqSwTZAekN8RPo3C0ouIvst3nIclS02CrNKV5O1O6vSJ8M7zEtVcfyxGYSzehjm1lpBrUOw_v_ftFJMEcv4WfBVGrI_NxJZz5fZYfNHMtMlr8cLp7EM8_tcwz-WzNctGSX2tVHP-zln3Yrdio0ynN5wA2kvQQdl4WpVynRxB0nOksK9pqlzbqZEt9pjNOnQ9zk50UGe9WI2FbURzDsHv_dttzq0YLbuaHNHexpiQ2u5Epqb1QIkQZElxq6XmCUZGoBMmAhYFQyo-xpCwmnIaaaKy1YUwanUAtHafJKTg8VEoK5CuBzPGgMDcPpVwhQ8sUj1UDmnOEo2q3TKPAtmBnDBHcgJs5YMvhZWVli1RkkIoKpCJ69rfXr2Dr9a4bPT8O-uewHRSQW2dKE2r5ZJZcGHqRi8vKgr4BgAbGRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+supersolutions+perspective+on+hypercontractivity&rft.jtitle=Annali+di+matematica+pura+ed+applicata&rft.au=Aoki+Yosuke&rft.au=Bennett%2C+Jonathan&rft.au=Bez+Neal&rft.au=Machihara+Shuji&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0373-3114&rft.eissn=1618-1891&rft.volume=199&rft.issue=5&rft.spage=2105&rft.epage=2116&rft_id=info:doi/10.1007%2Fs10231-020-00958-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0373-3114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0373-3114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0373-3114&client=summon