An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition

Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is def...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 77; no. 11; pp. 12256 - 12279
Main Authors Semwal, Vijay Bhaskar, Gupta, Anjali, Lalwani, Praveen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition.
AbstractList Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition.
Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition.
Author Semwal, Vijay Bhaskar
Gupta, Anjali
Lalwani, Praveen
Author_xml – sequence: 1
  givenname: Vijay Bhaskar
  orcidid: 0000-0003-0767-6057
  surname: Semwal
  fullname: Semwal, Vijay Bhaskar
  email: vsemwal@manit.ac.in
  organization: Maulana Azad National Institute of Technology
– sequence: 2
  givenname: Anjali
  orcidid: 0000-0003-1860-2352
  surname: Gupta
  fullname: Gupta, Anjali
  organization: Maulana Azad National Institute of Technology
– sequence: 3
  givenname: Praveen
  surname: Lalwani
  fullname: Lalwani, Praveen
  organization: VIT
BookMark eNpFkEtPwzAQhC1UJNrCH-BkibNh_UicHKuKl1SJC5wjJ960KYmd2ikIfj1pi9TTjjSj2dE3IxPnHRJyy-GeA-iHyLkQmoHgDKROM6YvyJQnWjJQmZqQKeQCWJYocUVmMW4BQEktp2S3cNT3Q9M1v2jp5qcMjaUWsactmuAat6adt9jSfTxodBG7ssWza_o-eFNtaO0D3ew74-i3aT-PVjU0X83QYKQBK792o_bumlzWpo1483_n5OPp8X35wlZvz6_LxYr14-6BCZVJyOpaKJEZ0JWsUmNlLvNcKCUQFehc1onNsbaiVFWSyhTBliA0V6JO5JzcnXrHfbs9xqHY-n1w48tCJFmSq1SpdEzJUyr2YdyM4ZziUBzYFie2xci2OLIttPwD0UdvsA
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DOI 10.1007/s11227-021-03768-7
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 12279
ExternalDocumentID 10_1007_s11227_021_03768_7
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: CR/2018/000203
  funderid: http://dx.doi.org/10.13039/501100001843
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-p157t-248308ff2428a07c3c6ad393992442ee40793f5d9efd2b4c5636e0db027142f53
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Fri Jul 25 23:01:46 EDT 2025
Fri Feb 21 02:47:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Activity recognition
Hybrid deep learning
Wearable sensor
Ensemble learning
Gait analysis
Human robot interaction(HRI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-248308ff2428a07c3c6ad393992442ee40793f5d9efd2b4c5636e0db027142f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0767-6057
0000-0003-1860-2352
PQID 2585946446
PQPubID 2043774
PageCount 24
ParticipantIDs proquest_journals_2585946446
springer_journals_10_1007_s11227_021_03768_7
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangXYanKGait classification through CNN-based ensemble learningMultimed Tools Appl2020801565158110.1007/s11042-020-09777-7
SemwalVBNandiGCGeneration of joint trajectories using hybrid automate-based model: a rocking block-based approachIEEE Sens J201616145805581610.1109/JSEN.2016.2570281
V B, Gupta V, Semwal VB (2021) Wearable sensor based pattern mining for human activity recognition: deep learning approach. Ind Robot 48(1)
Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) Mhealthdroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living. Springer, pp 91–98
Guo Y, Wu X, Shen L, Zhang Z, Zhang Y (2019) Method of gait disorders in Parkinson’s disease classification based on machine learning algorithms. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 768–772
MekruksavanichSJitpattanakulAYouplaoPYupapinPEnhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMsSymmetry2020129157010.3390/sym12091570
WangXYanWQCross-view gait recognition through ensemble learningNeural Comput Appl202032117275728710.1007/s00521-019-04256-z
SemwalVBKumarCMishraPKNandiGCDesign of vector field for different subphases of gait and regeneration of gait patternIEEE Trans Autom Sci Eng201615110411010.1109/TASE.2016.2594191
SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010
LiXYuanZZhaoJDuBLiaoXHumarIEdge-learning-enabled realistic touch and stable communication for remote haptic displayIEEE Netw202135114114710.1109/MNET.011.2000255
Poschadel N, Moghaddamnia S, Alcaraz JC, Steinbach M, Peissig J (2017) A dictionary learning based approach for gait classification. In: 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, pp 1–4
SemwalVBChakrabortyPNandiGCLess computationally intensive fuzzy logic (type-1)-based controller for humanoid push recoveryRobot Auton Syst20156312213510.1016/j.robot.2014.09.001
Gupta A, Semwal VB (2020) Multiple task human gait analysis and identification: ensemble learning approach. In: Emotion and information processing. Springer, pp 185–197
Ahmed MH, Sabir AT (2017) Human gender classification based on gait features using kinect sensor. In: 2017 3rd IEEE International Conference on Cybernetics (Cybconf). IEEE, pp 1–5
SemwalVBNandiGCToward developing a computational model for bipedal push recovery-a briefIEEE Sens J20151542021202210.1109/JSEN.2015.2389525
BanosOVillalongaCGarciaRSaezADamasMHolgado-TerrizaJALeeSPomaresHRojasIDesign, implementation and validation of a novel open framework for agile development of mobile health applicationsBiomed Eng Online2015142120
Semwal V. B (2017) Data driven computational model for bipedal walking and push recovery. arXiv:1710.06548
ChenZLiGFioranelliFGriffithsHPersonnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networksIEEE Geosci Remote Sens Lett201815566967310.1109/LGRS.2018.2806940
Semwal VB, Bhushan A, Nandi G (2013) Study of humanoid push recovery based on experiments. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE, pp 1–6
SemwalVBKatiyarSAChakrabortyRNandiGCBiologically-inspired push recovery capable bipedal locomotion modeling through hybrid automataRobot Auton Syst20157018119010.1016/j.robot.2015.02.009
GuptaJPPolytoolDSinghNSemwalVBAnalysis of gait pattern to recognize the human activitiesIJIMAI20142771610.9781/ijimai.2014.271
Nandi GC, Semwal VB, Raj M, Jindal A (2016) Modeling bipedal locomotion trajectories using hybrid automata. In: 2016 IEEE Region 10 Conference (TENCON). IEEE, pp 1013–1018
ShuJHamanoFAngusJApplication of extended Kalman filter for improving the accuracy and smoothness of Kinect skeleton-joint estimatesJ Eng Math2014881161175325463110.1007/s10665-014-9689-2
KwapiszJWeissGMooreSActivity recognition using cell phone accelerometersSigKDD Explor Newslett20101210114519648971964918
WangXZhangJYanWQGait recognition using multichannel convolution neural networksNeural Comput Appl201932142751428510.1007/s00521-019-04524-y
HsuW-CSugiartoTLinY-JYangF-CLinZ-YSunC-THsuC-LChouK-NMultiple-wearable-sensor-based gait classification and analysis in patients with neurological disordersSensors20181810339710.3390/s18103397
SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput Appl201728356557410.1007/s00521-015-2089-3
Patil P, Kumar KS, Gaud N, Semwal VB (2019) Clinical human gait classification: extreme learning machine approach. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, pp 1–6
SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y
Semwal VB, Gaud N, Nandi G (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine Intelligence and Signal Analysis. Springer, pp 135–145
Sun L, Yuan Y-X, Zhang Q, Wu Y-C (2018) Human gait classification using micro-motion and ensemble learning. In: IGARSS 2018–2018 IEEE International Geoscience And Remote Sensing Symposium. IEEE, pp 6971–6974
Papavasileiou I, Zhang W, Wang X, Bi J, Zhang L, Han S (2017) Classification of neurological gait disorders using multi-task feature learning. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems And Engineering Technologies (CHASE). IEEE, pp 195–204
References_xml – reference: Semwal VB, Bhushan A, Nandi G (2013) Study of humanoid push recovery based on experiments. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE, pp 1–6
– reference: Patil P, Kumar KS, Gaud N, Semwal VB (2019) Clinical human gait classification: extreme learning machine approach. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, pp 1–6
– reference: Poschadel N, Moghaddamnia S, Alcaraz JC, Steinbach M, Peissig J (2017) A dictionary learning based approach for gait classification. In: 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, pp 1–4
– reference: Semwal VB, Gaud N, Nandi G (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine Intelligence and Signal Analysis. Springer, pp 135–145
– reference: GuptaJPPolytoolDSinghNSemwalVBAnalysis of gait pattern to recognize the human activitiesIJIMAI20142771610.9781/ijimai.2014.271
– reference: MekruksavanichSJitpattanakulAYouplaoPYupapinPEnhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMsSymmetry2020129157010.3390/sym12091570
– reference: ShuJHamanoFAngusJApplication of extended Kalman filter for improving the accuracy and smoothness of Kinect skeleton-joint estimatesJ Eng Math2014881161175325463110.1007/s10665-014-9689-2
– reference: SemwalVBKatiyarSAChakrabortyRNandiGCBiologically-inspired push recovery capable bipedal locomotion modeling through hybrid automataRobot Auton Syst20157018119010.1016/j.robot.2015.02.009
– reference: LiXYuanZZhaoJDuBLiaoXHumarIEdge-learning-enabled realistic touch and stable communication for remote haptic displayIEEE Netw202135114114710.1109/MNET.011.2000255
– reference: V B, Gupta V, Semwal VB (2021) Wearable sensor based pattern mining for human activity recognition: deep learning approach. Ind Robot 48(1)
– reference: SemwalVBKumarCMishraPKNandiGCDesign of vector field for different subphases of gait and regeneration of gait patternIEEE Trans Autom Sci Eng201615110411010.1109/TASE.2016.2594191
– reference: Papavasileiou I, Zhang W, Wang X, Bi J, Zhang L, Han S (2017) Classification of neurological gait disorders using multi-task feature learning. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems And Engineering Technologies (CHASE). IEEE, pp 195–204
– reference: SemwalVBChakrabortyPNandiGCLess computationally intensive fuzzy logic (type-1)-based controller for humanoid push recoveryRobot Auton Syst20156312213510.1016/j.robot.2014.09.001
– reference: BanosOVillalongaCGarciaRSaezADamasMHolgado-TerrizaJALeeSPomaresHRojasIDesign, implementation and validation of a novel open framework for agile development of mobile health applicationsBiomed Eng Online2015142120
– reference: SemwalVBNandiGCToward developing a computational model for bipedal push recovery-a briefIEEE Sens J20151542021202210.1109/JSEN.2015.2389525
– reference: WangXZhangJYanWQGait recognition using multichannel convolution neural networksNeural Comput Appl201932142751428510.1007/s00521-019-04524-y
– reference: KwapiszJWeissGMooreSActivity recognition using cell phone accelerometersSigKDD Explor Newslett20101210114519648971964918
– reference: Ahmed MH, Sabir AT (2017) Human gender classification based on gait features using kinect sensor. In: 2017 3rd IEEE International Conference on Cybernetics (Cybconf). IEEE, pp 1–5
– reference: Sun L, Yuan Y-X, Zhang Q, Wu Y-C (2018) Human gait classification using micro-motion and ensemble learning. In: IGARSS 2018–2018 IEEE International Geoscience And Remote Sensing Symposium. IEEE, pp 6971–6974
– reference: WangXYanWQCross-view gait recognition through ensemble learningNeural Comput Appl202032117275728710.1007/s00521-019-04256-z
– reference: Semwal V. B (2017) Data driven computational model for bipedal walking and push recovery. arXiv:1710.06548
– reference: Gupta A, Semwal VB (2020) Multiple task human gait analysis and identification: ensemble learning approach. In: Emotion and information processing. Springer, pp 185–197
– reference: Guo Y, Wu X, Shen L, Zhang Z, Zhang Y (2019) Method of gait disorders in Parkinson’s disease classification based on machine learning algorithms. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 768–772
– reference: Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) Mhealthdroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living. Springer, pp 91–98
– reference: WangXYanKGait classification through CNN-based ensemble learningMultimed Tools Appl2020801565158110.1007/s11042-020-09777-7
– reference: SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010
– reference: SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput Appl201728356557410.1007/s00521-015-2089-3
– reference: SemwalVBNandiGCGeneration of joint trajectories using hybrid automate-based model: a rocking block-based approachIEEE Sens J201616145805581610.1109/JSEN.2016.2570281
– reference: SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y
– reference: ChenZLiGFioranelliFGriffithsHPersonnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networksIEEE Geosci Remote Sens Lett201815566967310.1109/LGRS.2018.2806940
– reference: Nandi GC, Semwal VB, Raj M, Jindal A (2016) Modeling bipedal locomotion trajectories using hybrid automata. In: 2016 IEEE Region 10 Conference (TENCON). IEEE, pp 1013–1018
– reference: HsuW-CSugiartoTLinY-JYangF-CLinZ-YSunC-THsuC-LChouK-NMultiple-wearable-sensor-based gait classification and analysis in patients with neurological disordersSensors20181810339710.3390/s18103397
SSID ssj0004373
Score 2.5555327
Snippet Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 12256
SubjectTerms Accuracy
Activity recognition
Artificial neural networks
Classification
Compilers
Computer Science
Datasets
Deep learning
Edge computing
Ensemble learning
Gait
Inertial platforms
Inertial sensing devices
Interpreters
Knee
Locomotion
Machine learning
Processor Architectures
Programming Languages
Scientific papers
Sensors
Thigh
Walking
Title An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition
URI https://link.springer.com/article/10.1007/s11227-021-03768-7
https://www.proquest.com/docview/2585946446
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Ix6l8sCIpcSPxB5baKlAMFGpTFES2wXRpoUWIfj1nN2ECMTClOEiDz6f_X26--4QOtMKYDfjlgTKCAInRJDUyIxEABVypblUXkh7excNhvx6JEalKGxRVbtXKUl_U9dit5DSmLiSggCiQpJ4HTUFcHdXyDWknVoNyVZ5ZQXESApOS6nM32v8AJa_cqH-ielvo80SG-LOypk7aM0Uu2irmruAyzDcQy-dAs8g1KdPn0bjxw8nusLamDkuZ0CMsR9wg11R-xgDUTXTbGJqa9VIHANixX5KH35PJ8_elPtxEsCf8Xdt0azYR8N-7_5iQMrRCWQeinhJKJcskNbCAyzTIM5ZHqWaKdeFlnNqDHd98azQylhNM56LiEUm0BmQ1JBTK9gBahSzwhwinPLMhgByGFOC21wqnQPlocLAWqGw0RFqVTuYlOd_kVBgIYoD1gLzebWrtbnulez8kYA_Eu-PJD7-3-8naIM6b3pxYAs1lq9v5hRQwjJro2ane9ntu-_Vw02v7Q_JF5Vkt_g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRjwKeGDEUuJHYo8VoirQdmqlblES2wXRpoUWIfj1nN2ECMTCfJEH3138ne6--xC60gpgN-OWBMoIAhEiSGpkRiKACrnSXCpPpO31o86Q34_EqCSFLapp96ol6f_UNdktpDQmbqQggKyQJF5HGwAGpIvlIW3VbEi26isrKIyk4LSkyvx9xg9g-asX6p-Y9i7aLrEhbq2cuYfWTLGPdirdBVym4QF6aRV4Bqk-ffo0Gj9-ONIV1sbMcakBMcZe4Aa7ofYxhkLVTLOJqa3VInEMiBV7lT78nk6evSn3chJQP-Pv2aJZcYiG7dvBTYeU0glkHop4SSiXLJDWwgMs0yDOWR6lmim3hZZzagx3e_Gs0MpYTTOei4hFJtAZFKkhp1awI9QoZoU5RjjlmQ0B5DCmBLe5VDqHkocKA2eFwkYnqFndYFLG_yKhUIUoDlgLzNfVrdbmeley80cC_ki8P5L49H-fX6LNzqDXTbp3_YcztEWdZz1RsIkay9c3cw6IYZld-AD5At2Xt-U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN-JRwAMjVhM_EnusgKq8KgYqdYuS2AZEmxYoQvDrObsJAcTCfJYH3538fbr77hA60gpgN-OWBMoIAhEiSGpkRiKACrnSXCovpL3uRd0-vxiIwTcVv-92r0qSM02Dm9JUTFsTbVu18C2kNCauvSCADJEknkcL3KmBIaL7tF0rI9msxqyAJEnBaSmb-fuOHyDzV13UfzedVbRc4kTcnjl2Dc2ZYh2tVDsYcJmSG-ipXeAxpP3o4cNofP_uBFhYGzPB5T6IO-yX3WDX4H6HgbSaUTY0tbUaKo4BvWK_sQ-_pcNHb8r9agng0virz2hcbKJ-5-z2pEvKNQpkEop4SiiXLJDWwmcs0yDOWR6lmik3kZZzagx3M_Ks0MpYTTOei4hFJtAZENaQUyvYFmoU48JsI5zyzIYAeBhTgttcKp0D_aHCwF2hsNEOalYvmJS58JJQYCSKA-4C83H1qrW5npvs_JGAPxLvjyTe_d_xQ7R4c9pJrs57l3toiTrHes1gEzWmz69mH8DDNDvw8fEJruS8GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+hybrid+deep+learning+model+using+ensemble+learning+approach+for+human+walking+activities+recognition&rft.jtitle=The+Journal+of+supercomputing&rft.au=Semwal+Vijay+Bhaskar&rft.au=Gupta%2C+Anjali&rft.au=Lalwani+Praveen&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=11&rft.spage=12256&rft.epage=12279&rft_id=info:doi/10.1007%2Fs11227-021-03768-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon