An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition
Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is def...
Saved in:
Published in | The Journal of supercomputing Vol. 77; no. 11; pp. 12256 - 12279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition. |
---|---|
AbstractList | Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition. Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using wearable sensors. This research work presents the multitask human walking activities recognition using human gait patterns. Human locomotion is defined as the change in the joint angles of hip, knee and ankle. To achieve the aforementioned objective, the data are collected for 50 subjects in a controlled laboratory environment using inertial measurement unit (IMU) sensors for 7 different activities. The IMU sensor is placed on the chest, left thigh, and right thigh. Total 100 samples are collected for all 7 activities. The sampling rate considered was 50 Hz. Following 7 walking activities are performed for all the 50 subjects: (i) natural walk, (ii) standing, (iii) climbing stairs, (iv) cycling, (v) jogging, (vi)running, (vii) knees bending(Crouching). The major contribution of this research paper is the design of four hybrid deep learning models to provide the generic activity recognition framework and tune the performance. The following combination of the deep learning model is designed for the classification of gait activities, namely, convolution neural network–long short-term memory (CNN–LSTM), CNN–gated recurrent unit (CNN–GRU), LSTM–CNN and LSTM–GRU. To support edge computing, the ensemble learning is utilized to optimized the model size. The proposed ensemble learning-based hybrid deep learning framework has provided a promising classification accuracy of 99.34% over other models. The other models namely CNN, LSTM, GRU, CNN–LSTM, LSTM–CNN, CNN–GRU, GRU–CNN have achieved 97.26%, 90.67%, 77.38%, 97.83%, 94.35%, 97.64%, 96.98% accuracy, respectively, on our HAG data set. The proposed technique is also validated on MHEALTH data set for comparative analysis. The hybrid deep learning model in combination with ensemble learning has outperformed other techniques. The optimized code can be used on small computation devices for walking activity recognition. |
Author | Semwal, Vijay Bhaskar Gupta, Anjali Lalwani, Praveen |
Author_xml | – sequence: 1 givenname: Vijay Bhaskar orcidid: 0000-0003-0767-6057 surname: Semwal fullname: Semwal, Vijay Bhaskar email: vsemwal@manit.ac.in organization: Maulana Azad National Institute of Technology – sequence: 2 givenname: Anjali orcidid: 0000-0003-1860-2352 surname: Gupta fullname: Gupta, Anjali organization: Maulana Azad National Institute of Technology – sequence: 3 givenname: Praveen surname: Lalwani fullname: Lalwani, Praveen organization: VIT |
BookMark | eNpFkEtPwzAQhC1UJNrCH-BkibNh_UicHKuKl1SJC5wjJ960KYmd2ikIfj1pi9TTjjSj2dE3IxPnHRJyy-GeA-iHyLkQmoHgDKROM6YvyJQnWjJQmZqQKeQCWJYocUVmMW4BQEktp2S3cNT3Q9M1v2jp5qcMjaUWsactmuAat6adt9jSfTxodBG7ssWza_o-eFNtaO0D3ew74-i3aT-PVjU0X83QYKQBK792o_bumlzWpo1483_n5OPp8X35wlZvz6_LxYr14-6BCZVJyOpaKJEZ0JWsUmNlLvNcKCUQFehc1onNsbaiVFWSyhTBliA0V6JO5JzcnXrHfbs9xqHY-n1w48tCJFmSq1SpdEzJUyr2YdyM4ZziUBzYFie2xci2OLIttPwD0UdvsA |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DOI | 10.1007/s11227-021-03768-7 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 12279 |
ExternalDocumentID | 10_1007_s11227_021_03768_7 |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: CR/2018/000203 funderid: http://dx.doi.org/10.13039/501100001843 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA |
ID | FETCH-LOGICAL-p157t-248308ff2428a07c3c6ad393992442ee40793f5d9efd2b4c5636e0db027142f53 |
IEDL.DBID | U2A |
ISSN | 0920-8542 |
IngestDate | Fri Jul 25 23:01:46 EDT 2025 Fri Feb 21 02:47:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Activity recognition Hybrid deep learning Wearable sensor Ensemble learning Gait analysis Human robot interaction(HRI) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p157t-248308ff2428a07c3c6ad393992442ee40793f5d9efd2b4c5636e0db027142f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0767-6057 0000-0003-1860-2352 |
PQID | 2585946446 |
PQPubID | 2043774 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2585946446 springer_journals_10_1007_s11227_021_03768_7 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WangXYanKGait classification through CNN-based ensemble learningMultimed Tools Appl2020801565158110.1007/s11042-020-09777-7 SemwalVBNandiGCGeneration of joint trajectories using hybrid automate-based model: a rocking block-based approachIEEE Sens J201616145805581610.1109/JSEN.2016.2570281 V B, Gupta V, Semwal VB (2021) Wearable sensor based pattern mining for human activity recognition: deep learning approach. Ind Robot 48(1) Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) Mhealthdroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living. Springer, pp 91–98 Guo Y, Wu X, Shen L, Zhang Z, Zhang Y (2019) Method of gait disorders in Parkinson’s disease classification based on machine learning algorithms. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 768–772 MekruksavanichSJitpattanakulAYouplaoPYupapinPEnhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMsSymmetry2020129157010.3390/sym12091570 WangXYanWQCross-view gait recognition through ensemble learningNeural Comput Appl202032117275728710.1007/s00521-019-04256-z SemwalVBKumarCMishraPKNandiGCDesign of vector field for different subphases of gait and regeneration of gait patternIEEE Trans Autom Sci Eng201615110411010.1109/TASE.2016.2594191 SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010 LiXYuanZZhaoJDuBLiaoXHumarIEdge-learning-enabled realistic touch and stable communication for remote haptic displayIEEE Netw202135114114710.1109/MNET.011.2000255 Poschadel N, Moghaddamnia S, Alcaraz JC, Steinbach M, Peissig J (2017) A dictionary learning based approach for gait classification. In: 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, pp 1–4 SemwalVBChakrabortyPNandiGCLess computationally intensive fuzzy logic (type-1)-based controller for humanoid push recoveryRobot Auton Syst20156312213510.1016/j.robot.2014.09.001 Gupta A, Semwal VB (2020) Multiple task human gait analysis and identification: ensemble learning approach. In: Emotion and information processing. Springer, pp 185–197 Ahmed MH, Sabir AT (2017) Human gender classification based on gait features using kinect sensor. In: 2017 3rd IEEE International Conference on Cybernetics (Cybconf). IEEE, pp 1–5 SemwalVBNandiGCToward developing a computational model for bipedal push recovery-a briefIEEE Sens J20151542021202210.1109/JSEN.2015.2389525 BanosOVillalongaCGarciaRSaezADamasMHolgado-TerrizaJALeeSPomaresHRojasIDesign, implementation and validation of a novel open framework for agile development of mobile health applicationsBiomed Eng Online2015142120 Semwal V. B (2017) Data driven computational model for bipedal walking and push recovery. arXiv:1710.06548 ChenZLiGFioranelliFGriffithsHPersonnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networksIEEE Geosci Remote Sens Lett201815566967310.1109/LGRS.2018.2806940 Semwal VB, Bhushan A, Nandi G (2013) Study of humanoid push recovery based on experiments. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE, pp 1–6 SemwalVBKatiyarSAChakrabortyRNandiGCBiologically-inspired push recovery capable bipedal locomotion modeling through hybrid automataRobot Auton Syst20157018119010.1016/j.robot.2015.02.009 GuptaJPPolytoolDSinghNSemwalVBAnalysis of gait pattern to recognize the human activitiesIJIMAI20142771610.9781/ijimai.2014.271 Nandi GC, Semwal VB, Raj M, Jindal A (2016) Modeling bipedal locomotion trajectories using hybrid automata. In: 2016 IEEE Region 10 Conference (TENCON). IEEE, pp 1013–1018 ShuJHamanoFAngusJApplication of extended Kalman filter for improving the accuracy and smoothness of Kinect skeleton-joint estimatesJ Eng Math2014881161175325463110.1007/s10665-014-9689-2 KwapiszJWeissGMooreSActivity recognition using cell phone accelerometersSigKDD Explor Newslett20101210114519648971964918 WangXZhangJYanWQGait recognition using multichannel convolution neural networksNeural Comput Appl201932142751428510.1007/s00521-019-04524-y HsuW-CSugiartoTLinY-JYangF-CLinZ-YSunC-THsuC-LChouK-NMultiple-wearable-sensor-based gait classification and analysis in patients with neurological disordersSensors20181810339710.3390/s18103397 SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput Appl201728356557410.1007/s00521-015-2089-3 Patil P, Kumar KS, Gaud N, Semwal VB (2019) Clinical human gait classification: extreme learning machine approach. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, pp 1–6 SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y Semwal VB, Gaud N, Nandi G (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine Intelligence and Signal Analysis. Springer, pp 135–145 Sun L, Yuan Y-X, Zhang Q, Wu Y-C (2018) Human gait classification using micro-motion and ensemble learning. In: IGARSS 2018–2018 IEEE International Geoscience And Remote Sensing Symposium. IEEE, pp 6971–6974 Papavasileiou I, Zhang W, Wang X, Bi J, Zhang L, Han S (2017) Classification of neurological gait disorders using multi-task feature learning. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems And Engineering Technologies (CHASE). IEEE, pp 195–204 |
References_xml | – reference: Semwal VB, Bhushan A, Nandi G (2013) Study of humanoid push recovery based on experiments. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE, pp 1–6 – reference: Patil P, Kumar KS, Gaud N, Semwal VB (2019) Clinical human gait classification: extreme learning machine approach. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, pp 1–6 – reference: Poschadel N, Moghaddamnia S, Alcaraz JC, Steinbach M, Peissig J (2017) A dictionary learning based approach for gait classification. In: 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, pp 1–4 – reference: Semwal VB, Gaud N, Nandi G (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine Intelligence and Signal Analysis. Springer, pp 135–145 – reference: GuptaJPPolytoolDSinghNSemwalVBAnalysis of gait pattern to recognize the human activitiesIJIMAI20142771610.9781/ijimai.2014.271 – reference: MekruksavanichSJitpattanakulAYouplaoPYupapinPEnhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMsSymmetry2020129157010.3390/sym12091570 – reference: ShuJHamanoFAngusJApplication of extended Kalman filter for improving the accuracy and smoothness of Kinect skeleton-joint estimatesJ Eng Math2014881161175325463110.1007/s10665-014-9689-2 – reference: SemwalVBKatiyarSAChakrabortyRNandiGCBiologically-inspired push recovery capable bipedal locomotion modeling through hybrid automataRobot Auton Syst20157018119010.1016/j.robot.2015.02.009 – reference: LiXYuanZZhaoJDuBLiaoXHumarIEdge-learning-enabled realistic touch and stable communication for remote haptic displayIEEE Netw202135114114710.1109/MNET.011.2000255 – reference: V B, Gupta V, Semwal VB (2021) Wearable sensor based pattern mining for human activity recognition: deep learning approach. Ind Robot 48(1) – reference: SemwalVBKumarCMishraPKNandiGCDesign of vector field for different subphases of gait and regeneration of gait patternIEEE Trans Autom Sci Eng201615110411010.1109/TASE.2016.2594191 – reference: Papavasileiou I, Zhang W, Wang X, Bi J, Zhang L, Han S (2017) Classification of neurological gait disorders using multi-task feature learning. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems And Engineering Technologies (CHASE). IEEE, pp 195–204 – reference: SemwalVBChakrabortyPNandiGCLess computationally intensive fuzzy logic (type-1)-based controller for humanoid push recoveryRobot Auton Syst20156312213510.1016/j.robot.2014.09.001 – reference: BanosOVillalongaCGarciaRSaezADamasMHolgado-TerrizaJALeeSPomaresHRojasIDesign, implementation and validation of a novel open framework for agile development of mobile health applicationsBiomed Eng Online2015142120 – reference: SemwalVBNandiGCToward developing a computational model for bipedal push recovery-a briefIEEE Sens J20151542021202210.1109/JSEN.2015.2389525 – reference: WangXZhangJYanWQGait recognition using multichannel convolution neural networksNeural Comput Appl201932142751428510.1007/s00521-019-04524-y – reference: KwapiszJWeissGMooreSActivity recognition using cell phone accelerometersSigKDD Explor Newslett20101210114519648971964918 – reference: Ahmed MH, Sabir AT (2017) Human gender classification based on gait features using kinect sensor. In: 2017 3rd IEEE International Conference on Cybernetics (Cybconf). IEEE, pp 1–5 – reference: Sun L, Yuan Y-X, Zhang Q, Wu Y-C (2018) Human gait classification using micro-motion and ensemble learning. In: IGARSS 2018–2018 IEEE International Geoscience And Remote Sensing Symposium. IEEE, pp 6971–6974 – reference: WangXYanWQCross-view gait recognition through ensemble learningNeural Comput Appl202032117275728710.1007/s00521-019-04256-z – reference: Semwal V. B (2017) Data driven computational model for bipedal walking and push recovery. arXiv:1710.06548 – reference: Gupta A, Semwal VB (2020) Multiple task human gait analysis and identification: ensemble learning approach. In: Emotion and information processing. Springer, pp 185–197 – reference: Guo Y, Wu X, Shen L, Zhang Z, Zhang Y (2019) Method of gait disorders in Parkinson’s disease classification based on machine learning algorithms. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, pp 768–772 – reference: Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) Mhealthdroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living. Springer, pp 91–98 – reference: WangXYanKGait classification through CNN-based ensemble learningMultimed Tools Appl2020801565158110.1007/s11042-020-09777-7 – reference: SemwalVBRajMNandiGCBiometric gait identification based on a multilayer perceptronRobot Auton Syst201565657510.1016/j.robot.2014.11.010 – reference: SemwalVBMondalKNandiGCRobust and accurate feature selection for humanoid push recovery and classification: deep learning approachNeural Comput Appl201728356557410.1007/s00521-015-2089-3 – reference: SemwalVBNandiGCGeneration of joint trajectories using hybrid automate-based model: a rocking block-based approachIEEE Sens J201616145805581610.1109/JSEN.2016.2570281 – reference: SemwalVBSinghaJSharmaPKChauhanABeheraBAn optimized feature selection technique based on incremental feature analysis for bio-metric gait data classificationMultimed Tools Appl20177622244572447510.1007/s11042-016-4110-y – reference: ChenZLiGFioranelliFGriffithsHPersonnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networksIEEE Geosci Remote Sens Lett201815566967310.1109/LGRS.2018.2806940 – reference: Nandi GC, Semwal VB, Raj M, Jindal A (2016) Modeling bipedal locomotion trajectories using hybrid automata. In: 2016 IEEE Region 10 Conference (TENCON). IEEE, pp 1013–1018 – reference: HsuW-CSugiartoTLinY-JYangF-CLinZ-YSunC-THsuC-LChouK-NMultiple-wearable-sensor-based gait classification and analysis in patients with neurological disordersSensors20181810339710.3390/s18103397 |
SSID | ssj0004373 |
Score | 2.5555327 |
Snippet | Recent advancements in edge computing devices motivate us to develop a sustainable and reliable technique for multiple gait activities recognition using... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 12256 |
SubjectTerms | Accuracy Activity recognition Artificial neural networks Classification Compilers Computer Science Datasets Deep learning Edge computing Ensemble learning Gait Inertial platforms Inertial sensing devices Interpreters Knee Locomotion Machine learning Processor Architectures Programming Languages Scientific papers Sensors Thigh Walking |
Title | An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition |
URI | https://link.springer.com/article/10.1007/s11227-021-03768-7 https://www.proquest.com/docview/2585946446 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Ix6l8sCIpcSPxB5baKlAMFGpTFES2wXRpoUWIfj1nN2ECMTClOEiDz6f_X26--4QOtMKYDfjlgTKCAInRJDUyIxEABVypblUXkh7excNhvx6JEalKGxRVbtXKUl_U9dit5DSmLiSggCiQpJ4HTUFcHdXyDWknVoNyVZ5ZQXESApOS6nM32v8AJa_cqH-ielvo80SG-LOypk7aM0Uu2irmruAyzDcQy-dAs8g1KdPn0bjxw8nusLamDkuZ0CMsR9wg11R-xgDUTXTbGJqa9VIHANixX5KH35PJ8_elPtxEsCf8Xdt0azYR8N-7_5iQMrRCWQeinhJKJcskNbCAyzTIM5ZHqWaKdeFlnNqDHd98azQylhNM56LiEUm0BmQ1JBTK9gBahSzwhwinPLMhgByGFOC21wqnQPlocLAWqGw0RFqVTuYlOd_kVBgIYoD1gLzebWrtbnulez8kYA_Eu-PJD7-3-8naIM6b3pxYAs1lq9v5hRQwjJro2ane9ntu-_Vw02v7Q_JF5Vkt_g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRjwKeGDEUuJHYo8VoirQdmqlblES2wXRpoUWIfj1nN2ECMTCfJEH3138ne6--xC60gpgN-OWBMoIAhEiSGpkRiKACrnSXCpPpO31o86Q34_EqCSFLapp96ol6f_UNdktpDQmbqQggKyQJF5HGwAGpIvlIW3VbEi26isrKIyk4LSkyvx9xg9g-asX6p-Y9i7aLrEhbq2cuYfWTLGPdirdBVym4QF6aRV4Bqk-ffo0Gj9-ONIV1sbMcakBMcZe4Aa7ofYxhkLVTLOJqa3VInEMiBV7lT78nk6evSn3chJQP-Pv2aJZcYiG7dvBTYeU0glkHop4SSiXLJDWwgMs0yDOWR6lmim3hZZzagx3e_Gs0MpYTTOei4hFJtAZFKkhp1awI9QoZoU5RjjlmQ0B5DCmBLe5VDqHkocKA2eFwkYnqFndYFLG_yKhUIUoDlgLzNfVrdbmeley80cC_ki8P5L49H-fX6LNzqDXTbp3_YcztEWdZz1RsIkay9c3cw6IYZld-AD5At2Xt-U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN-JRwAMjVhM_EnusgKq8KgYqdYuS2AZEmxYoQvDrObsJAcTCfJYH3538fbr77hA60gpgN-OWBMoIAhEiSGpkRiKACrnSXCovpL3uRd0-vxiIwTcVv-92r0qSM02Dm9JUTFsTbVu18C2kNCauvSCADJEknkcL3KmBIaL7tF0rI9msxqyAJEnBaSmb-fuOHyDzV13UfzedVbRc4kTcnjl2Dc2ZYh2tVDsYcJmSG-ipXeAxpP3o4cNofP_uBFhYGzPB5T6IO-yX3WDX4H6HgbSaUTY0tbUaKo4BvWK_sQ-_pcNHb8r9agng0virz2hcbKJ-5-z2pEvKNQpkEop4SiiXLJDWwmcs0yDOWR6lmik3kZZzagx3M_Ks0MpYTTOei4hFJtAZENaQUyvYFmoU48JsI5zyzIYAeBhTgttcKp0D_aHCwF2hsNEOalYvmJS58JJQYCSKA-4C83H1qrW5npvs_JGAPxLvjyTe_d_xQ7R4c9pJrs57l3toiTrHes1gEzWmz69mH8DDNDvw8fEJruS8GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+hybrid+deep+learning+model+using+ensemble+learning+approach+for+human+walking+activities+recognition&rft.jtitle=The+Journal+of+supercomputing&rft.au=Semwal+Vijay+Bhaskar&rft.au=Gupta%2C+Anjali&rft.au=Lalwani+Praveen&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=11&rft.spage=12256&rft.epage=12279&rft_id=info:doi/10.1007%2Fs11227-021-03768-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |