Sublinear Cost Low Rank Approximation via Subspace Sampling

Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has...

Full description

Saved in:
Bibliographic Details
Published inMathematical Aspects of Computer and Information Sciences Vol. 11989; pp. 89 - 104
Main Authors Pan, Victor Y., Luan, Qi, Svadlenka, John, Zhao, Liang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030431193
9783030431198
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-43120-4_9

Cover

Abstract Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has entries. Although every sublinear cost algorithm for LRA fails to approximate the worst case inputs, we prove that our sublinear cost variations of a popular subspace sampling algorithm output accurate LRA of a large class of inputs. Namely, they do so with a high probability (whp) for a random input matrix that admits its LRA. In other papers we propose and analyze other sublinear cost algorithms for LRA and Linear Least Sqaures Regression. Our numerical tests are in good accordance with our formal results.
AbstractList Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has entries. Although every sublinear cost algorithm for LRA fails to approximate the worst case inputs, we prove that our sublinear cost variations of a popular subspace sampling algorithm output accurate LRA of a large class of inputs. Namely, they do so with a high probability (whp) for a random input matrix that admits its LRA. In other papers we propose and analyze other sublinear cost algorithms for LRA and Linear Least Sqaures Regression. Our numerical tests are in good accordance with our formal results.
Author Luan, Qi
Svadlenka, John
Pan, Victor Y.
Zhao, Liang
Author_xml – sequence: 1
  givenname: Victor Y.
  surname: Pan
  fullname: Pan, Victor Y.
  email: victor.pan@lehman.cuny.edu
– sequence: 2
  givenname: Qi
  surname: Luan
  fullname: Luan, Qi
– sequence: 3
  givenname: John
  surname: Svadlenka
  fullname: Svadlenka, John
– sequence: 4
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
BookMark eNotUNtOwzAMDTAQ29gX8NIfCNh1kjbiaZq4SZOQGDxHWUihbGtD0wGfTzb2YlvHPsf2GbFB0zaesUuEKwQornVRcuJAwAVhnqLRR2ySUErYHhLHbIgKkRMJfcJGhwZqGrBhqnOuC0FnbIQopCxRFHjOJjF-AkCea0jDQ3az2C7XdeNtl83a2Gfz9id7ts0qm4bQtb_1xvZ122Tftc3SZAzW-WxhNyFx3i_YaWXX0U8Oecxe725fZg98_nT_OJvOeUCpNHcghbQlaS2XSlZKFU7pN2srp6pCYqoRlLPg0-lQelAaJYDLSywh95WgMcN_3Ri6tNZ3Ztm2q2gQzM4qk0wxZNLHZu-LSVYlDv1z0hdfWx9743ck55u-s2v3YUPvu2gUUplLMoXcSdEfWbZmjA
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID FFUUA
DEWEY 4.0151000000000003
DOI 10.1007/978-3-030-43120-4_9
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030431204
3030431207
EISSN 1611-3349
Editor Slamanig, Daniel
Tsigaridas, Elias
Zafeirakopoulos, Zafeirakis
Editor_xml – sequence: 1
  fullname: Slamanig, Daniel
– sequence: 2
  fullname: Tsigaridas, Elias
– sequence: 3
  fullname: Zafeirakopoulos, Zafeirakis
EndPage 104
ExternalDocumentID EBC6138253_75_100
GroupedDBID 38.
AABBV
ACGCR
AEDXK
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z7R
Z83
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p1569-c0545a83995b65f667c69daafc6f75169d106ca0e11908e0691500c281802ef43
ISBN 3030431193
9783030431198
ISSN 0302-9743
IngestDate Tue Jul 29 19:46:16 EDT 2025
Wed May 28 23:40:31 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA76.9.M35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1569-c0545a83995b65f667c69daafc6f75169d106ca0e11908e0691500c281802ef43
OCLC 1145581471
PQID EBC6138253_75_100
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_43120_4_9
proquest_ebookcentralchapters_6138253_75_100
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 8th International Conference, MACIS 2019, Gebze, Turkey, November 13-15, 2019, Revised Selected Papers
PublicationTitle Mathematical Aspects of Computer and Information Sciences
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002290043
ssj0002792
Score 1.5933937
Snippet Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis....
SourceID springer
proquest
SourceType Publisher
StartPage 89
SubjectTerms 15A52
65F30
65Y20
68Q25
68W20
Low-rank approximation
Sublinear cost
Subspace sampling
Title Sublinear Cost Low Rank Approximation via Subspace Sampling
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6138253&ppg=100
http://link.springer.com/10.1007/978-3-030-43120-4_9
Volume 11989
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLegXNAO2_jQGGPygdNKkFMnrqOdSlWoEOzAl7hZtmtLCClFtPsQf_3eS-20ibjAJaqs2Hp5P9d-34-QQ69T7SbOJpxbnWTS5EkhTJHoHjcyz7jUEhOcL3-J8W12fp_fL7vwVdklc3NsX17NK3kPqjAGuGKW7BuQrReFAfgN-MITEIZnS_htmllDh6FYcLXi8lMMy4h9GkKkb52dGP_Gs9Vdco1WqBKL-Qyns3n3Yvq3e6XLRxROn6f_HsLMPw-6OmFAv3bda41B6OHCC_aCHmvZC6K9sGVxXDF6Dc4aOiZH5ylP00Wz6PrQxFirV4_g1agLmJrAXCAiU8Xyxole9pSx5mB1r45OhgIrI-Zc9XOsqbxO1vsy65CNwej84q62oGGleqAME3YiiXxRUmlJcl1nalFKuEVRQ6toOcIr-eLmE_mAOScUk0GAxs9kzZVb5GNEkgbktsnPGi-KeFHAiyJetIEXBbxoxItGvHbI7enoZjhOQvuL5AmU6iKxIE3nWmLusRG5F6JvRTHR2lvh--jenIA6bzVz8KFMOiYKEO6ZxfJerOd8xndJp5yW7guhsucz69Pc8tRkApYBpdcY77HVjJaM75GjyAhVOelDZLBdfPZMNQHZIz8isxS-PVOx-DUwWXEFTFYVkxUw-evb1t4nm8td-4105s-_3QHIfXPzPWyA_-34U1Y
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Aspects+of+Computer+and+Information+Sciences&rft.atitle=Sublinear+Cost+Low+Rank+Approximation+via+Subspace+Sampling&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030431198&rft.volume=11989&rft_id=info:doi/10.1007%2F978-3-030-43120-4_9&rft.externalDBID=100&rft.externalDocID=EBC6138253_75_100
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6138253-l.jpg