Sublinear Cost Low Rank Approximation via Subspace Sampling
Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has...
Saved in:
Published in | Mathematical Aspects of Computer and Information Sciences Vol. 11989; pp. 89 - 104 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2020
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030431193 9783030431198 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-43120-4_9 |
Cover
Abstract | Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has entries. Although every sublinear cost algorithm for LRA fails to approximate the worst case inputs, we prove that our sublinear cost variations of a popular subspace sampling algorithm output accurate LRA of a large class of inputs.
Namely, they do so with a high probability (whp) for a random input matrix that admits its LRA. In other papers we propose and analyze other sublinear cost algorithms for LRA and Linear Least Sqaures Regression. Our numerical tests are in good accordance with our formal results. |
---|---|
AbstractList | Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA can be performed at sublinear cost, that is, by using much fewer memory cells and arithmetic operations than an input matrix has entries. Although every sublinear cost algorithm for LRA fails to approximate the worst case inputs, we prove that our sublinear cost variations of a popular subspace sampling algorithm output accurate LRA of a large class of inputs.
Namely, they do so with a high probability (whp) for a random input matrix that admits its LRA. In other papers we propose and analyze other sublinear cost algorithms for LRA and Linear Least Sqaures Regression. Our numerical tests are in good accordance with our formal results. |
Author | Luan, Qi Svadlenka, John Pan, Victor Y. Zhao, Liang |
Author_xml | – sequence: 1 givenname: Victor Y. surname: Pan fullname: Pan, Victor Y. email: victor.pan@lehman.cuny.edu – sequence: 2 givenname: Qi surname: Luan fullname: Luan, Qi – sequence: 3 givenname: John surname: Svadlenka fullname: Svadlenka, John – sequence: 4 givenname: Liang surname: Zhao fullname: Zhao, Liang |
BookMark | eNotUNtOwzAMDTAQ29gX8NIfCNh1kjbiaZq4SZOQGDxHWUihbGtD0wGfTzb2YlvHPsf2GbFB0zaesUuEKwQornVRcuJAwAVhnqLRR2ySUErYHhLHbIgKkRMJfcJGhwZqGrBhqnOuC0FnbIQopCxRFHjOJjF-AkCea0jDQ3az2C7XdeNtl83a2Gfz9id7ts0qm4bQtb_1xvZ122Tftc3SZAzW-WxhNyFx3i_YaWXX0U8Oecxe725fZg98_nT_OJvOeUCpNHcghbQlaS2XSlZKFU7pN2srp6pCYqoRlLPg0-lQelAaJYDLSywh95WgMcN_3Ri6tNZ3Ztm2q2gQzM4qk0wxZNLHZu-LSVYlDv1z0hdfWx9743ck55u-s2v3YUPvu2gUUplLMoXcSdEfWbZmjA |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2020 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
DBID | FFUUA |
DEWEY | 4.0151000000000003 |
DOI | 10.1007/978-3-030-43120-4_9 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030431204 3030431207 |
EISSN | 1611-3349 |
Editor | Slamanig, Daniel Tsigaridas, Elias Zafeirakopoulos, Zafeirakis |
Editor_xml | – sequence: 1 fullname: Slamanig, Daniel – sequence: 2 fullname: Tsigaridas, Elias – sequence: 3 fullname: Zafeirakopoulos, Zafeirakis |
EndPage | 104 |
ExternalDocumentID | EBC6138253_75_100 |
GroupedDBID | 38. AABBV ACGCR AEDXK AEJLV AEJNW AEKFX ALMA_UNASSIGNED_HOLDINGS APEJL AVCSZ AZTDL BBABE CYNQG CZZ DACMV ESBCR FFUUA I4C IEZ OAOFD OPOMJ SBO TPJZQ TSXQS Z7R Z83 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p1569-c0545a83995b65f667c69daafc6f75169d106ca0e11908e0691500c281802ef43 |
ISBN | 3030431193 9783030431198 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:46:16 EDT 2025 Wed May 28 23:40:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | QA76.9.M35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1569-c0545a83995b65f667c69daafc6f75169d106ca0e11908e0691500c281802ef43 |
OCLC | 1145581471 |
PQID | EBC6138253_75_100 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_030_43120_4_9 proquest_ebookcentralchapters_6138253_75_100 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 8th International Conference, MACIS 2019, Gebze, Turkey, November 13-15, 2019, Revised Selected Papers |
PublicationTitle | Mathematical Aspects of Computer and Information Sciences |
PublicationYear | 2020 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002290043 ssj0002792 |
Score | 1.5933937 |
Snippet | Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for Matrix and Tensor Computations and Big Data Mining and Analysis.... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 89 |
SubjectTerms | 15A52 65F30 65Y20 68Q25 68W20 Low-rank approximation Sublinear cost Subspace sampling |
Title | Sublinear Cost Low Rank Approximation via Subspace Sampling |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6138253&ppg=100 http://link.springer.com/10.1007/978-3-030-43120-4_9 |
Volume | 11989 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLegXNAO2_jQGGPygdNKkFMnrqOdSlWoEOzAl7hZtmtLCClFtPsQf_3eS-20ibjAJaqs2Hp5P9d-34-QQ69T7SbOJpxbnWTS5EkhTJHoHjcyz7jUEhOcL3-J8W12fp_fL7vwVdklc3NsX17NK3kPqjAGuGKW7BuQrReFAfgN-MITEIZnS_htmllDh6FYcLXi8lMMy4h9GkKkb52dGP_Gs9Vdco1WqBKL-Qyns3n3Yvq3e6XLRxROn6f_HsLMPw-6OmFAv3bda41B6OHCC_aCHmvZC6K9sGVxXDF6Dc4aOiZH5ylP00Wz6PrQxFirV4_g1agLmJrAXCAiU8Xyxole9pSx5mB1r45OhgIrI-Zc9XOsqbxO1vsy65CNwej84q62oGGleqAME3YiiXxRUmlJcl1nalFKuEVRQ6toOcIr-eLmE_mAOScUk0GAxs9kzZVb5GNEkgbktsnPGi-KeFHAiyJetIEXBbxoxItGvHbI7enoZjhOQvuL5AmU6iKxIE3nWmLusRG5F6JvRTHR2lvh--jenIA6bzVz8KFMOiYKEO6ZxfJerOd8xndJp5yW7guhsucz69Pc8tRkApYBpdcY77HVjJaM75GjyAhVOelDZLBdfPZMNQHZIz8isxS-PVOx-DUwWXEFTFYVkxUw-evb1t4nm8td-4105s-_3QHIfXPzPWyA_-34U1Y |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Aspects+of+Computer+and+Information+Sciences&rft.atitle=Sublinear+Cost+Low+Rank+Approximation+via+Subspace+Sampling&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030431198&rft.volume=11989&rft_id=info:doi/10.1007%2F978-3-030-43120-4_9&rft.externalDBID=100&rft.externalDocID=EBC6138253_75_100 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6138253-l.jpg |