Multi-scale Graph Convolutional Network for Mild Cognitive Impairment Detection

Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is also the best time for treatment. However, existing methods only consider neuroimaging features learned from group relationships instead of the subjects’ individual features. Such methods ignore demographic relat...

Full description

Saved in:
Bibliographic Details
Published inGraph Learning in Medical Imaging Vol. 11849; pp. 79 - 87
Main Authors Yu, Shuangzhi, Yue, Guanghui, Elazab, Ahmed, Song, Xuegang, Wang, Tianfu, Lei, Baiying
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN303035816X
9783030358167
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-35817-4_10

Cover

Loading…
Abstract Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is also the best time for treatment. However, existing methods only consider neuroimaging features learned from group relationships instead of the subjects’ individual features. Such methods ignore demographic relationships (i.e., non-image information). In this paper, we propose a novel method based on multi-scale graph convolutional network (MS-GCN) via inception module, which combines image and non-image information for MCI detection. Specifically, since the brain has the characteristics of high-order interactions, we first analyze the dynamic high-order features of resting functional magnetic resonance imaging (rs-fMRI) time series and construct a dynamic high-order brain functional connectivity network (DH-FCN). To get more effective features and further improve the detection performance, we extract the local weighted clustering coefficients from the original DH-FCN. Then, gender and age information are combined with the neuroimaging data to build a graph. Finally, we perform the detection using the MS-GCN, and validate the proposed method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The experimental results demonstrate that our proposed method can achieve remarkable MCI detection performance.
AbstractList Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is also the best time for treatment. However, existing methods only consider neuroimaging features learned from group relationships instead of the subjects’ individual features. Such methods ignore demographic relationships (i.e., non-image information). In this paper, we propose a novel method based on multi-scale graph convolutional network (MS-GCN) via inception module, which combines image and non-image information for MCI detection. Specifically, since the brain has the characteristics of high-order interactions, we first analyze the dynamic high-order features of resting functional magnetic resonance imaging (rs-fMRI) time series and construct a dynamic high-order brain functional connectivity network (DH-FCN). To get more effective features and further improve the detection performance, we extract the local weighted clustering coefficients from the original DH-FCN. Then, gender and age information are combined with the neuroimaging data to build a graph. Finally, we perform the detection using the MS-GCN, and validate the proposed method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The experimental results demonstrate that our proposed method can achieve remarkable MCI detection performance.
Author Yu, Shuangzhi
Yue, Guanghui
Song, Xuegang
Elazab, Ahmed
Wang, Tianfu
Lei, Baiying
Author_xml – sequence: 1
  givenname: Shuangzhi
  surname: Yu
  fullname: Yu, Shuangzhi
– sequence: 2
  givenname: Guanghui
  surname: Yue
  fullname: Yue, Guanghui
– sequence: 3
  givenname: Ahmed
  surname: Elazab
  fullname: Elazab, Ahmed
– sequence: 4
  givenname: Xuegang
  surname: Song
  fullname: Song, Xuegang
– sequence: 5
  givenname: Tianfu
  surname: Wang
  fullname: Wang, Tianfu
– sequence: 6
  givenname: Baiying
  surname: Lei
  fullname: Lei, Baiying
  email: leiby@szu.edu.cn
BookMark eNpFkEtOwzAURQ0URFu6AwbZgMH_zxAVKJVaYAASM8tJnDY0jYPjlu2wFlZGwkeM3tO5uk96ZwQGta8dAOcYXWCE5KWWClKIKIKUKywhMxgdgEmHaQe_GTsEQywwhpQyfQRGf4F4GYBhtxOoJaMnYIQxkZopxOQpmLTtK0KIEMExYUPwuNxVsYRtZiuXzIJt1snU13tf7WLpa1sl9y6--7BJCh8-P5ZllXf5qi5juXfJfNvYMmxdHZNrF13WV87AcWGr1k1-5xg83948Te_g4mE2n14tYIO5QLAQOk-RzjSXROZaMaZEmrGC8xxpIq2VStiCpizjEvGU6kxIznLtiGNcK07HgPzcbZtQ1isXTOr9pu00mV6g6UwZajoN5luW6QX-l5rg33aujcb1raz7INgqW9smutAarqXUQhkljNL0C7GqcJk
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-35817-4_10
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030358174
3030358178
EISSN 1611-3349
Editor Liu, Mingxia
Zhang, Daoqiang
Zhou, Luping
Jie, Biao
Editor_xml – sequence: 1
  fullname: Liu, Mingxia
– sequence: 2
  fullname: Zhang, Daoqiang
– sequence: 3
  fullname: Zhou, Luping
– sequence: 4
  fullname: Jie, Biao
EndPage 87
ExternalDocumentID EBC5977968_86_89
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p1560-f69db09c95727d984486bc4f55d0927aa786af3b4c5705b39c6754d9e2e459853
ISBN 303035816X
9783030358167
ISSN 0302-9743
IngestDate Tue Jul 29 19:40:10 EDT 2025
Thu May 29 00:10:06 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1560-f69db09c95727d984486bc4f55d0927aa786af3b4c5705b39c6754d9e2e459853
Notes This work was supported partly by National Natural Science Foundation of China (Nos. 61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ2017 0413152804728, JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818094109846).
OCLC 1127948047
PQID EBC5977968_86_89
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_030_35817_4_10
proquest_ebookcentralchapters_5977968_86_89
PublicationCentury 2000
PublicationDate 2019
20191114
PublicationDateYYYYMMDD 2019-01-01
2019-11-14
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
PublicationTitle Graph Learning in Medical Imaging
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002265124
ssj0002792
Score 1.6239802
Snippet Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is also the best time for treatment. However, existing methods only...
SourceID springer
proquest
SourceType Publisher
StartPage 79
SubjectTerms Dynamic high-order brain functional connectivity network
Mild cognitive impairment detection
Multi-scale graph convolutional network
rs-fMRI
Title Multi-scale Graph Convolutional Network for Mild Cognitive Impairment Detection
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5977968&ppg=89
http://link.springer.com/10.1007/978-3-030-35817-4_10
Volume 11849
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcql6aAtUfSIfyqkyym5sxz5ut0sBFdQDIG6WX5GQ2lCxC4f-mv6W_rLOOI9NVnuhl2iVtaPRfI4zM55vhpCPMsSYeZ8zISRnXFrFLHdj5lQRvB-7ko-RjXx2Lo8v-em1uF514UvskqU79L838kr-B1W4B7giS_YRyHYPhRvwG_CFKyAM1zXjdxhmrav1Y6nptj5q4qW0hy4nP1Prof5qSDxbtoB_YVWkibPb6qERDqac19ngmHR4MJscTLOzmx8BxrS5RSewa9zcpcSBL3GZ0reqfsAAOUqDgEEbMFwLOfaiXtOvAycTPnIZVkmr22Z0uya4hnrjHtxPu4CpDOcWjJsmfXVQ8rpuH7RW8Xr-eYZV8bRURkmj9BbZKpQYke3p_PTbVRdBA8MRrBXs29VJ2JRUWkncI0tuEmjgVqydhCcD4-IFeYakE4psEJDxJXkSqx3yvG25QZsdeJd87wFJE5B0ACRtgKQA5N8_CCLtQKQrEGkH4h65PJpfzI5Z0xSD_ULSOyulDi7TXguwPINW4F5L53kpRMj0pLC2UNKWueNeFJlwufbgEvKg4yRyocE4e0VG1W0VXxMarA5YLFSXBbyS1lk1idiw0eaaFyGO35BPrXZMOrpv8oV9rYuFGaAEo1sFGhy8MG1FbNC8yQ1o3iTNG9T820c9-x15ulrJ78loeXcfP4AxuHT7zar4B9JcXLU
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graph+Learning+in+Medical+Imaging&rft.atitle=Multi-scale+Graph+Convolutional+Network+for%C2%A0Mild+Cognitive+Impairment+Detection&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030358167&rft.volume=11849&rft_id=info:doi/10.1007%2F978-3-030-35817-4_10&rft.externalDBID=89&rft.externalDocID=EBC5977968_86_89
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5977968-l.jpg