Electronic Structure of Low‐Dimensional Inorganic/Organic Interfaces: Hybrid Density Functional Theory, G0W0, and Electrostatic Models

First‐principles simulations of electronic properties of hybrid inorganic/organic interfaces are challenging, as common density functional theory (DFT) approximations target specific material classes like bulk semiconductors or gas‐phase molecules. Taking as a prototypical example anthracene (ANT) p...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 221; no. 1
Main Authors Krumland, Jannis, Cocchi, Caterina
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1862-6300
1862-6319
DOI10.1002/pssa.202300089

Cover

Abstract First‐principles simulations of electronic properties of hybrid inorganic/organic interfaces are challenging, as common density functional theory (DFT) approximations target specific material classes like bulk semiconductors or gas‐phase molecules. Taking as a prototypical example anthracene (ANT) physisorbed on monolayer MoS2, the ability of different ab initio schemes to describe the electronic structure using semilocal and hybrid DFT is assessed. For the latter, an unconstrained three‐parameter range‐separation scheme is used. Comparisons against results from the many‐body perturbation theory indicate that properly parametrized hybrid functionals can approximate with reasonable accuracy the quasiparticle properties of both ANT and MoS2 taken by themselves. However, this is not the case for the hybrid interface, where neither functional can predict the correct‐level alignment nor provide a particularly good starting point for G0W0 calculations. It is shown that nonempirically parametrized electrostatic models can accomplish the same task at negligible computational costs. Such schemes can include substrates of hybrid interfaces in good agreement with experimental data. The results indicate that currently, fully atomistic, many‐body simulations of weakly interacting hybrid systems are not worth the required computational resources. In contrast, ab initio‐parametrized effective models mimicking the environment offer a scalable alternative without compromising accuracy and predictivity.
AbstractList First‐principles simulations of electronic properties of hybrid inorganic/organic interfaces are challenging, as common density functional theory (DFT) approximations target specific material classes like bulk semiconductors or gas‐phase molecules. Taking as a prototypical example anthracene (ANT) physisorbed on monolayer MoS2, the ability of different ab initio schemes to describe the electronic structure using semilocal and hybrid DFT is assessed. For the latter, an unconstrained three‐parameter range‐separation scheme is used. Comparisons against results from the many‐body perturbation theory indicate that properly parametrized hybrid functionals can approximate with reasonable accuracy the quasiparticle properties of both ANT and MoS2 taken by themselves. However, this is not the case for the hybrid interface, where neither functional can predict the correct‐level alignment nor provide a particularly good starting point for G0W0 calculations. It is shown that nonempirically parametrized electrostatic models can accomplish the same task at negligible computational costs. Such schemes can include substrates of hybrid interfaces in good agreement with experimental data. The results indicate that currently, fully atomistic, many‐body simulations of weakly interacting hybrid systems are not worth the required computational resources. In contrast, ab initio‐parametrized effective models mimicking the environment offer a scalable alternative without compromising accuracy and predictivity.
Author Cocchi, Caterina
Krumland, Jannis
Author_xml – sequence: 1
  givenname: Jannis
  surname: Krumland
  fullname: Krumland, Jannis
– sequence: 2
  givenname: Caterina
  surname: Cocchi
  fullname: Cocchi, Caterina
BookMark eNo9TrtOwzAUtVCRKIWV2RJr0147cROzob6log4UMVaOcwOpgl1sR6gbIyPfyJcQ1IrpHB2d1yXpGGuQkBsGAwbAh3vv1YADjwEgk2eky7IRj0Yxk51_DnBBLr3fASQiSVmXfE1r1MFZU2n6GFyjQ-OQ2pKu7MfP5_ekekPjK2tUTZfGuhfVGofrI7ZKQFcqjf6OLg65qwo6-bOHA501RodjbvOK1h36dA7P0KfKFPS06YMKbcuDLbD2V-S8VLXH6xP2yNNsuhkvotV6vhzfr6I9E3GIskwWjKPmoJjSiQCtCswlCFXmRZrqssxB8EznmGkp4yRDliJwoSXDkeAQ98jtsXfv7HuDPmx3tnHtT7_lknHJQUIS_wIscGi-
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.202300089
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
GroupedDBID .3N
.GA
05W
0R~
10A
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
7SP
7SR
7U5
8-0
8-1
8-3
8-4
8-5
8BQ
8FD
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JG9
JPC
L7M
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~IA
~WT
ID FETCH-LOGICAL-p153t-889d12ec20a1ac450cadeb905afbd77cffb0528cbe8c99348e17e025c91e65203
ISSN 1862-6300
IngestDate Wed Aug 13 04:35:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p153t-889d12ec20a1ac450cadeb905afbd77cffb0528cbe8c99348e17e025c91e65203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pssa.202300089
PQID 2912920904
PQPubID 1036347
ParticipantIDs proquest_journals_2912920904
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
SSID ssj0045471
Score 2.426333
Snippet First‐principles simulations of electronic properties of hybrid inorganic/organic interfaces are challenging, as common density functional theory (DFT)...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Accuracy
Anthracene
Bulk density
Computing costs
Density functional theory
Electronic properties
Electronic structure
Elementary excitations
Environment models
First principles
Hybrid systems
Molybdenum disulfide
Parameterization
Perturbation theory
Substrates
Title Electronic Structure of Low‐Dimensional Inorganic/Organic Interfaces: Hybrid Density Functional Theory, G0W0, and Electrostatic Models
URI https://www.proquest.com/docview/2912920904
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCERIXxFM8CvKBW7qt7a7XNreqJIqqUhAkIrdo7fVKlUpSsYkQnDhy5H_wr_glzKy9j1LE67JaOZJ35fkyr51vhpCnjHllTZYnMudZAvFGmRjLfFLYwkpnPdcl8p1fnGSTWXo0l_PB4Fuvammztrvu0y95Jf8jVVgDuSJL9h8k224KC3AP8oUrSBiufyXjUTfD5k3dBxa_BmDSf_WhLWJ4ju37Q-sNUAZhiJODRwYSpgspwRILszA5MPmIDC7QQsu6VmMMVi8mCwOJv06js7esKfqMb4C0JNgLB6udVX1_91WAAWYs1ptqCMdxWpzuDg9qldT7dl5vBs5zOLVhtMutNXi_eddUYB7hkKU2EDhcOVePJUYqIzIZ834aQ6Q_pTH-rCx7ShqisARbhQUb1l-L6jdqdhHI130IX7IYoQPteVVhEyqIx8AnMp1tbOoBTl4uxrPj48V0NJ9eIVeFUqEm4HXbqwwbo9XRffNyTYdQJvYu7n7J6teuzPQmuRFjEHoQAHWLDPzyNrkWRFXdIV86WNEWVnRVUoDV989fe4CiLaD2IpxoB6dnNICJRjDRDkw0gGmHIpR2KEiWXgASDUC6S2bj0fRwksSBHck5GM51orUpuPBOsJznLpUMKR7WMJmXtlDKlaVlUmhQAdqBX5xqz5UHp9sZ7jMp2P49srVcLf19Qr1XwhlZqqzQKefKZjpXECzsy4LrtJAPyHZziIv4j6wWwnAcvmZY-vD3Pz8i1zsMbpMtOEv_GJzLtX1SC_UHDrSBsg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+Structure+of+Low%E2%80%90Dimensional+Inorganic%2FOrganic+Interfaces%3A+Hybrid+Density+Functional+Theory%2C+G0W0%2C+and+Electrostatic+Models&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Krumland%2C+Jannis&rft.au=Cocchi%2C+Caterina&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=221&rft.issue=1&rft_id=info:doi/10.1002%2Fpssa.202300089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon