P‐Type Boron‐Doped Monolayer Graphene with Tunable Bandgap for Enhanced Photocatalytic H2 Evolution under Visible‐Light Irradiation

Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the do...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 11; no. 20; pp. 5145 - 5153
Main Authors Wu, Yujun, Han, Zhanli, Younas, Waqar, Zhu, Youqi, Ma, Xilan, Cao, Chuanbao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene. Stand up and jump: P‐type boron‐doped monolayer graphene samples with tunable bandgaps show outstanding visible‐light photocatalytic H2 production rate and excellent stability.
AbstractList Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene. Stand up and jump: P‐type boron‐doped monolayer graphene samples with tunable bandgaps show outstanding visible‐light photocatalytic H2 production rate and excellent stability.
Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene.
Author Wu, Yujun
Younas, Waqar
Cao, Chuanbao
Zhu, Youqi
Han, Zhanli
Ma, Xilan
Author_xml – sequence: 1
  givenname: Yujun
  surname: Wu
  fullname: Wu, Yujun
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Zhanli
  surname: Han
  fullname: Han, Zhanli
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Waqar
  surname: Younas
  fullname: Younas, Waqar
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Youqi
  surname: Zhu
  fullname: Zhu, Youqi
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xilan
  surname: Ma
  fullname: Ma, Xilan
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Chuanbao
  orcidid: 0000-0003-2830-4383
  surname: Cao
  fullname: Cao, Chuanbao
  email: cbcao@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNo9kDtPwzAUhS0EEs-V2RJzwY8kjkcIBSoV0SGwRjeO07gKdnASUDZWNn4jvwRXoE73Huk750jnGO1bZzVC55RcUkLYlVKDumSESkJZnO6hI5omYsZTKfd3f0oO0XHfbwhJJBfxEfpa_Xx-51On8Y3zzgZx6zpd4UdnXQuT9vjeQ9doq_GHGRqcjxbKNtBgqzV0uHYez20DVgXTqnGDUzBAOw1G4QeG5--uHQfjLB5tFcJeTG-CPdQszboZ8MJ7qAxsiVN0UEPb67P_e4Ke7-Z59jBbPt0vsuvlrKNRms5imgiZAqsl40GnDERSS2BEAa8k5zomTMQRr1VZa6mhFFKoJCJ1XNai4oKfoIu_3M67t1H3Q7Fxo7ehsmCciIgLGkWBkn_Uh2n1VHTevIKfCkqK7dbFdutit3WRZXm2U_wX3PN7Ow
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DOI 10.1002/cctc.201901258
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 5153
ExternalDocumentID CCTC201901258
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21371023
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: 3090012221914
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
ID FETCH-LOGICAL-p1488-516798a2f92348882a76f9a20ca3d933e5027543fcbfe9eab797c640f5bf7d373
ISSN 1867-3880
IngestDate Fri Jul 25 12:15:24 EDT 2025
Wed Jan 22 16:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1488-516798a2f92348882a76f9a20ca3d933e5027543fcbfe9eab797c640f5bf7d373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2830-4383
PQID 2307437144
PQPubID 986343
PageCount 9
ParticipantIDs proquest_journals_2307437144
wiley_primary_10_1002_cctc_201901258_CCTC201901258
PublicationCentury 2000
PublicationDate October 18, 2019
PublicationDateYYYYMMDD 2019-10-18
PublicationDate_xml – month: 10
  year: 2019
  text: October 18, 2019
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2018; 441
2017; 7
2018; 364
2007; 19
2013; 3
2013; 25
2019; 94
2015; 3
2015; 347
2019; 58
2016; 10
2014; 24
2015; 7
1972; 238
2017; 9
2017; 139
2016; 12
2013; 9
2016; 11
2010; 22
2016; 6
2018; 8
2018; 315
2015; 358
2015; 82
2012; 111–112
2017; 33
2013; 117
2018
2009; 9
2017
2009; 8
2016
2015
2012; 48
2008; 20
2018; 12
2010; 3
2005; 15
2018; 11
2016; 28
2001; 414
2014; 53
References_xml – volume: 111–112
  start-page: 409
  year: 2012
  end-page: 414
  publication-title: Appl. Catal. B
– start-page: 8
  year: 2016
  end-page: 1416
  publication-title: ChemCatChem
– volume: 3
  start-page: 3710
  year: 2015
  end-page: 3718
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 158
  year: 2016
  end-page: 163
  publication-title: Nano Energy
– start-page: 8
  year: 2016
  end-page: 2845
  publication-title: ChemCatChem
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  publication-title: Nat. Mater.
– volume: 441
  start-page: 978
  year: 2018
  end-page: 983
  publication-title: Appl. Surf. Sci.
– volume: 364
  start-page: 130
  year: 2018
  end-page: 139
  publication-title: J. Photochem. Photobiol. A
– volume: 139
  start-page: 15584
  year: 2017
  end-page: 15587
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3820
  year: 2013
  end-page: 3839
  publication-title: Adv. Mater.
– volume: 8
  start-page: 11615
  year: 2018
  end-page: 11621
  publication-title: ACS Catal.
– volume: 7
  start-page: 10613
  year: 2019
  end-page: 10622
  publication-title: J. Mater. Chem. C
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  publication-title: Science
– volume: 48
  start-page: 12017
  year: 2012
  end-page: 12019
  publication-title: Chem. Commun.
– volume: 19
  start-page: 4396
  year: 2007
  end-page: 4404
  publication-title: Chem. Mater.
– volume: 11
  start-page: 351
  year: 2016
  end-page: 372
  publication-title: Nano Today
– volume: 315
  start-page: 79
  year: 2018
  end-page: 92
  publication-title: Catal. Today
– volume: 82
  start-page: 506
  year: 2015
  end-page: 512
  publication-title: Carbon
– volume: 22
  start-page: 5119
  year: 2010
  end-page: 5121
  publication-title: Chem. Mater.
– volume: 58
  start-page: 2073
  year: 2019
  end-page: 2077
  publication-title: Angew. Chem. Int. Ed.
– volume: 358
  start-page: 2
  year: 2015
  end-page: 14
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 6640
  year: 2016
  end-page: 6696
  publication-title: Small
– volume: 33
  start-page: 3161
  year: 2017
  end-page: 3169
  publication-title: Langmuir
– volume: 53
  start-page: 5107
  year: 2014
  end-page: 5111
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 36000
  year: 2017
  end-page: 36006
  publication-title: RSC Adv.
– volume: 20
  start-page: 1299
  year: 2008
  end-page: 1307
  publication-title: Chem. Mater.
– start-page: 7
  year: 2015
  end-page: 951
  publication-title: ChemCatChem
– volume: 11
  start-page: 3088
  year: 2018
  end-page: 3095
  publication-title: Nano Res.
– volume: 10
  start-page: 2803
  year: 2016
  end-page: 2818
  publication-title: ACS Nano
– volume: 7
  start-page: 13915
  year: 2015
  end-page: 13924
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4558
  year: 2017
  end-page: 4569
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 4246
  year: 2005
  end-page: 4251
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1374
  year: 2009
  end-page: 1377
  publication-title: Nano Lett.
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  publication-title: Nature
– volume: 12
  start-page: 5551
  year: 2018
  end-page: 5558
  publication-title: ACS Nano
– volume: 3
  start-page: 882
  year: 2013
  end-page: 889
  publication-title: ACS Catal.
– volume: 414
  start-page: 625
  year: 2001
  end-page: 627
  publication-title: Nature
– start-page: 10
  year: 2018
  end-page: 3401
  publication-title: ChemCatChem
– volume: 6
  start-page: 3921
  year: 2016
  end-page: 3931
  publication-title: ACS Catal.
– volume: 3
  start-page: 615
  year: 2010
  end-page: 617
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 5719
  year: 2014
  end-page: 5727
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1316
  year: 2013
  end-page: 1320
  publication-title: Small
– start-page: 9
  year: 2017
  end-page: 952
  publication-title: ChemCatChem
– volume: 11
  start-page: 3201
  year: 2018
  end-page: 3211
  publication-title: Energy Environ. Sci.
– volume: 94
  start-page: 22
  year: 2019
  end-page: 37
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 117
  start-page: 15540
  year: 2013
  end-page: 15544
  publication-title: J. Phys. Chem. C
– start-page: 7
  year: 2015
  end-page: 615
  publication-title: ChemCatChem
– start-page: 10
  year: 2018
  end-page: 5664
  publication-title: ChemCatChem
SSID ssj0069375
Score 2.3661444
Snippet Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 5145
SubjectTerms Boron
boron-doped
Decay rate
Energy gap
Graphene
Hall effect
Hydrogen production
Light irradiation
monolayer graphene
Monolayers
p-type
Photocatalysis
Photocatalysts
Pyrolysis
tunable bandgap
Water splitting
Title P‐Type Boron‐Doped Monolayer Graphene with Tunable Bandgap for Enhanced Photocatalytic H2 Evolution under Visible‐Light Irradiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901258
https://www.proquest.com/docview/2307437144
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gEuiE-xsCAfuEWB1M5Hc9xmuxQEqIcurLhEjuNsi5akWxIkOHHlxh_iz_BLmLETbyKtEOwlbdykVjIvzzPOzDMhT5UAkuM5ZtSwyPUFC91YTXI3V9IP_djLeYAFzm_ehvNj_9VJcDIa_eplLTV19kx-u7Su5CpWhTawK1bJ_odl7Z9CA3wH-8IWLAzbf7LxwqYqYDjpTFGNwDYdVhtwJuGZheAV_GrnBUpTA7OZqddlY4qmpqLMT8VGZxvOypXJB1isqrrSEztfUc91zpzZl_ZC9Lq5W-fdGh6lM2U7e40xvvNyu0WpA2vrTgFhpT4losYPOwY0mvubj015wYGaAHEG-2zdJyNTcvZenAubSPxhZc6vmvN1f95iHCPhD6h2AhSNUjRmJOq3mSWTLD-PezhkXo9twdkLeiM3uGb80lHBqMxKqTUr0QNiRi5-KL9tjwz-fqwe_JNkmdjfr5FdBlEK0OzuwfRwetS5AiH4fphDay-1Uw312PNhD4P4ph8laTdneYvcbOMTemDAdpuMVHmHXE-6ZQHvkh-L399_ItyohhvsaKBRCzTaAY0i0GgLNNoCjQLQaAc0OgQanTNqgUY10GgLNOhGQ4z2IHaPHB_NlsncbdfzcDcQdE_cQL_yE6yAoAL2J0xEYREL5knB85hzFeA7dJ8XMitUrEQWxZEMfa8IsiLKecTvk52yKtUDQuMwGCtwzeXYk36hWKYCLhXncRFwJWO-R_a7-5m2D-znFGsefFSo9PcI0_c43RhJl9SId7MUrZJaq6QDKz-8ykmPyI0L8O-TnXrbqMfgxtbZkxYsfwBplpjS
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%E2%80%90Type+Boron%E2%80%90Doped+Monolayer+Graphene+with+Tunable+Bandgap+for+Enhanced+Photocatalytic+H2+Evolution+under+Visible%E2%80%90Light+Irradiation&rft.jtitle=ChemCatChem&rft.au=Wu%2C+Yujun&rft.au=Han%2C+Zhanli&rft.au=Younas%2C+Waqar&rft.au=Zhu%2C+Youqi&rft.date=2019-10-18&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=11&rft.issue=20&rft.spage=5145&rft.epage=5153&rft_id=info:doi/10.1002%2Fcctc.201901258&rft.externalDBID=10.1002%252Fcctc.201901258&rft.externalDocID=CCTC201901258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon