P‐Type Boron‐Doped Monolayer Graphene with Tunable Bandgap for Enhanced Photocatalytic H2 Evolution under Visible‐Light Irradiation
Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the do...
Saved in:
Published in | ChemCatChem Vol. 11; no. 20; pp. 5145 - 5153 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene.
Stand up and jump: P‐type boron‐doped monolayer graphene samples with tunable bandgaps show outstanding visible‐light photocatalytic H2 production rate and excellent stability. |
---|---|
AbstractList | Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene.
Stand up and jump: P‐type boron‐doped monolayer graphene samples with tunable bandgaps show outstanding visible‐light photocatalytic H2 production rate and excellent stability. Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero bandgap limitation. Here, we report an efficient one‐step pyrolysis for preparing p‐type boron‐doped monolayer graphene. Through varying the dopant content, the bandgap of the boron‐doped graphene can be tuned. Moreover, a p‐type conductivity behavior of the boron‐doped monolayer graphene is demonstrated by the four‐probe measurement and Hall effect measurement. The boron‐doped graphene can service as an efficient semiconductor photocatalyst for hydrogen production from water splitting under visible‐light irradiation. The optimized boron‐doped graphene can deliver a high H2 production rate of 219.3 μmol h−1 g−1 without any cocatalyst. The photocatalyst can be recycled at least four times without obvious activity decay and maintain high H2 production rate of 215.3 μmol h−1 g−1 after 60 h reaction, indicative of excellent stability. This work may open up a new avenue for fabrication of new photocatalysts based on p‐type boron‐doped monolayer graphene. |
Author | Wu, Yujun Younas, Waqar Cao, Chuanbao Zhu, Youqi Han, Zhanli Ma, Xilan |
Author_xml | – sequence: 1 givenname: Yujun surname: Wu fullname: Wu, Yujun organization: Beijing Institute of Technology – sequence: 2 givenname: Zhanli surname: Han fullname: Han, Zhanli organization: Beijing Institute of Technology – sequence: 3 givenname: Waqar surname: Younas fullname: Younas, Waqar organization: Beijing Institute of Technology – sequence: 4 givenname: Youqi surname: Zhu fullname: Zhu, Youqi organization: Beijing Institute of Technology – sequence: 5 givenname: Xilan surname: Ma fullname: Ma, Xilan organization: Beijing Institute of Technology – sequence: 6 givenname: Chuanbao orcidid: 0000-0003-2830-4383 surname: Cao fullname: Cao, Chuanbao email: cbcao@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNo9kDtPwzAUhS0EEs-V2RJzwY8kjkcIBSoV0SGwRjeO07gKdnASUDZWNn4jvwRXoE73Huk750jnGO1bZzVC55RcUkLYlVKDumSESkJZnO6hI5omYsZTKfd3f0oO0XHfbwhJJBfxEfpa_Xx-51On8Y3zzgZx6zpd4UdnXQuT9vjeQ9doq_GHGRqcjxbKNtBgqzV0uHYez20DVgXTqnGDUzBAOw1G4QeG5--uHQfjLB5tFcJeTG-CPdQszboZ8MJ7qAxsiVN0UEPb67P_e4Ke7-Z59jBbPt0vsuvlrKNRms5imgiZAqsl40GnDERSS2BEAa8k5zomTMQRr1VZa6mhFFKoJCJ1XNai4oKfoIu_3M67t1H3Q7Fxo7ehsmCciIgLGkWBkn_Uh2n1VHTevIKfCkqK7dbFdutit3WRZXm2U_wX3PN7Ow |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DOI | 10.1002/cctc.201901258 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 5153 |
ExternalDocumentID | CCTC201901258 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21371023 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: 3090012221914 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS EJD ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY |
ID | FETCH-LOGICAL-p1488-516798a2f92348882a76f9a20ca3d933e5027543fcbfe9eab797c640f5bf7d373 |
ISSN | 1867-3880 |
IngestDate | Fri Jul 25 12:15:24 EDT 2025 Wed Jan 22 16:38:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1488-516798a2f92348882a76f9a20ca3d933e5027543fcbfe9eab797c640f5bf7d373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2830-4383 |
PQID | 2307437144 |
PQPubID | 986343 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2307437144 wiley_primary_10_1002_cctc_201901258_CCTC201901258 |
PublicationCentury | 2000 |
PublicationDate | October 18, 2019 |
PublicationDateYYYYMMDD | 2019-10-18 |
PublicationDate_xml | – month: 10 year: 2019 text: October 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2018; 441 2017; 7 2018; 364 2007; 19 2013; 3 2013; 25 2019; 94 2015; 3 2015; 347 2019; 58 2016; 10 2014; 24 2015; 7 1972; 238 2017; 9 2017; 139 2016; 12 2013; 9 2016; 11 2010; 22 2016; 6 2018; 8 2018; 315 2015; 358 2015; 82 2012; 111–112 2017; 33 2013; 117 2018 2009; 9 2017 2009; 8 2016 2015 2012; 48 2008; 20 2018; 12 2010; 3 2005; 15 2018; 11 2016; 28 2001; 414 2014; 53 |
References_xml | – volume: 111–112 start-page: 409 year: 2012 end-page: 414 publication-title: Appl. Catal. B – start-page: 8 year: 2016 end-page: 1416 publication-title: ChemCatChem – volume: 3 start-page: 3710 year: 2015 end-page: 3718 publication-title: J. Mater. Chem. A – volume: 28 start-page: 158 year: 2016 end-page: 163 publication-title: Nano Energy – start-page: 8 year: 2016 end-page: 2845 publication-title: ChemCatChem – volume: 8 start-page: 76 year: 2009 end-page: 80 publication-title: Nat. Mater. – volume: 441 start-page: 978 year: 2018 end-page: 983 publication-title: Appl. Surf. Sci. – volume: 364 start-page: 130 year: 2018 end-page: 139 publication-title: J. Photochem. Photobiol. A – volume: 139 start-page: 15584 year: 2017 end-page: 15587 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 3820 year: 2013 end-page: 3839 publication-title: Adv. Mater. – volume: 8 start-page: 11615 year: 2018 end-page: 11621 publication-title: ACS Catal. – volume: 7 start-page: 10613 year: 2019 end-page: 10622 publication-title: J. Mater. Chem. C – volume: 347 start-page: 970 year: 2015 end-page: 974 publication-title: Science – volume: 48 start-page: 12017 year: 2012 end-page: 12019 publication-title: Chem. Commun. – volume: 19 start-page: 4396 year: 2007 end-page: 4404 publication-title: Chem. Mater. – volume: 11 start-page: 351 year: 2016 end-page: 372 publication-title: Nano Today – volume: 315 start-page: 79 year: 2018 end-page: 92 publication-title: Catal. Today – volume: 82 start-page: 506 year: 2015 end-page: 512 publication-title: Carbon – volume: 22 start-page: 5119 year: 2010 end-page: 5121 publication-title: Chem. Mater. – volume: 58 start-page: 2073 year: 2019 end-page: 2077 publication-title: Angew. Chem. Int. Ed. – volume: 358 start-page: 2 year: 2015 end-page: 14 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 6640 year: 2016 end-page: 6696 publication-title: Small – volume: 33 start-page: 3161 year: 2017 end-page: 3169 publication-title: Langmuir – volume: 53 start-page: 5107 year: 2014 end-page: 5111 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 36000 year: 2017 end-page: 36006 publication-title: RSC Adv. – volume: 20 start-page: 1299 year: 2008 end-page: 1307 publication-title: Chem. Mater. – start-page: 7 year: 2015 end-page: 951 publication-title: ChemCatChem – volume: 11 start-page: 3088 year: 2018 end-page: 3095 publication-title: Nano Res. – volume: 10 start-page: 2803 year: 2016 end-page: 2818 publication-title: ACS Nano – volume: 7 start-page: 13915 year: 2015 end-page: 13924 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4558 year: 2017 end-page: 4569 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 4246 year: 2005 end-page: 4251 publication-title: J. Mater. Chem. – volume: 9 start-page: 1374 year: 2009 end-page: 1377 publication-title: Nano Lett. – volume: 238 start-page: 37 year: 1972 end-page: 38 publication-title: Nature – volume: 12 start-page: 5551 year: 2018 end-page: 5558 publication-title: ACS Nano – volume: 3 start-page: 882 year: 2013 end-page: 889 publication-title: ACS Catal. – volume: 414 start-page: 625 year: 2001 end-page: 627 publication-title: Nature – start-page: 10 year: 2018 end-page: 3401 publication-title: ChemCatChem – volume: 6 start-page: 3921 year: 2016 end-page: 3931 publication-title: ACS Catal. – volume: 3 start-page: 615 year: 2010 end-page: 617 publication-title: Energy Environ. Sci. – volume: 24 start-page: 5719 year: 2014 end-page: 5727 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1316 year: 2013 end-page: 1320 publication-title: Small – start-page: 9 year: 2017 end-page: 952 publication-title: ChemCatChem – volume: 11 start-page: 3201 year: 2018 end-page: 3211 publication-title: Energy Environ. Sci. – volume: 94 start-page: 22 year: 2019 end-page: 37 publication-title: J. Chem. Technol. Biotechnol. – volume: 117 start-page: 15540 year: 2013 end-page: 15544 publication-title: J. Phys. Chem. C – start-page: 7 year: 2015 end-page: 615 publication-title: ChemCatChem – start-page: 10 year: 2018 end-page: 5664 publication-title: ChemCatChem |
SSID | ssj0069375 |
Score | 2.3661444 |
Snippet | Graphene‐based materials are considered as one of the promising photocatalysts for hydrogen production from solar‐driven water splitting yet subject to zero... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 5145 |
SubjectTerms | Boron boron-doped Decay rate Energy gap Graphene Hall effect Hydrogen production Light irradiation monolayer graphene Monolayers p-type Photocatalysis Photocatalysts Pyrolysis tunable bandgap Water splitting |
Title | P‐Type Boron‐Doped Monolayer Graphene with Tunable Bandgap for Enhanced Photocatalytic H2 Evolution under Visible‐Light Irradiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901258 https://www.proquest.com/docview/2307437144 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gEuiE-xsCAfuEWB1M5Hc9xmuxQEqIcurLhEjuNsi5akWxIkOHHlxh_iz_BLmLETbyKtEOwlbdykVjIvzzPOzDMhT5UAkuM5ZtSwyPUFC91YTXI3V9IP_djLeYAFzm_ehvNj_9VJcDIa_eplLTV19kx-u7Su5CpWhTawK1bJ_odl7Z9CA3wH-8IWLAzbf7LxwqYqYDjpTFGNwDYdVhtwJuGZheAV_GrnBUpTA7OZqddlY4qmpqLMT8VGZxvOypXJB1isqrrSEztfUc91zpzZl_ZC9Lq5W-fdGh6lM2U7e40xvvNyu0WpA2vrTgFhpT4losYPOwY0mvubj015wYGaAHEG-2zdJyNTcvZenAubSPxhZc6vmvN1f95iHCPhD6h2AhSNUjRmJOq3mSWTLD-PezhkXo9twdkLeiM3uGb80lHBqMxKqTUr0QNiRi5-KL9tjwz-fqwe_JNkmdjfr5FdBlEK0OzuwfRwetS5AiH4fphDay-1Uw312PNhD4P4ph8laTdneYvcbOMTemDAdpuMVHmHXE-6ZQHvkh-L399_ItyohhvsaKBRCzTaAY0i0GgLNNoCjQLQaAc0OgQanTNqgUY10GgLNOhGQ4z2IHaPHB_NlsncbdfzcDcQdE_cQL_yE6yAoAL2J0xEYREL5knB85hzFeA7dJ8XMitUrEQWxZEMfa8IsiLKecTvk52yKtUDQuMwGCtwzeXYk36hWKYCLhXncRFwJWO-R_a7-5m2D-znFGsefFSo9PcI0_c43RhJl9SId7MUrZJaq6QDKz-8ykmPyI0L8O-TnXrbqMfgxtbZkxYsfwBplpjS |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%E2%80%90Type+Boron%E2%80%90Doped+Monolayer+Graphene+with+Tunable+Bandgap+for+Enhanced+Photocatalytic+H2+Evolution+under+Visible%E2%80%90Light+Irradiation&rft.jtitle=ChemCatChem&rft.au=Wu%2C+Yujun&rft.au=Han%2C+Zhanli&rft.au=Younas%2C+Waqar&rft.au=Zhu%2C+Youqi&rft.date=2019-10-18&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=11&rft.issue=20&rft.spage=5145&rft.epage=5153&rft_id=info:doi/10.1002%2Fcctc.201901258&rft.externalDBID=10.1002%252Fcctc.201901258&rft.externalDocID=CCTC201901258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |