Porous Ga2O3 Nanotubes Derived from Urease‐Mediated Interfacially‐Grown NH4Ga(OH)2CO3 for High‐Efficient Hydrogen Evolution

The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipit...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 52
Main Authors Wang, Ting, Wang, Zheng‐Wu, Zhang, Ye, Yang, Xiao‐Ting, Zhu, Yi‐Zhou, Wang, He‐Fang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark. A novel biological strategy via NH4Ga(OH)2CO3 nanotube intermediate is presented for fabrication of Ga2O3 nanotube. All species from urea enzymolysis are subtly used for the interfacial growth of NH4Ga(OH)2CO3 nanotube in aqueous solution of gallium salts at 20–50 °C, and the balance between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation is the key point.
AbstractList The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark.
The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark. A novel biological strategy via NH4Ga(OH)2CO3 nanotube intermediate is presented for fabrication of Ga2O3 nanotube. All species from urea enzymolysis are subtly used for the interfacial growth of NH4Ga(OH)2CO3 nanotube in aqueous solution of gallium salts at 20–50 °C, and the balance between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation is the key point.
Author Zhu, Yi‐Zhou
Wang, Ting
Wang, He‐Fang
Zhang, Ye
Wang, Zheng‐Wu
Yang, Xiao‐Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Wang
  fullname: Wang, Ting
  organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– sequence: 2
  givenname: Zheng‐Wu
  surname: Wang
  fullname: Wang, Zheng‐Wu
  organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– sequence: 3
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– sequence: 4
  givenname: Xiao‐Ting
  surname: Yang
  fullname: Yang, Xiao‐Ting
  organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– sequence: 5
  givenname: Yi‐Zhou
  surname: Zhu
  fullname: Zhu, Yi‐Zhou
  email: zhuyizhou@nankai.edu.cn
  organization: Nankai University
– sequence: 6
  givenname: He‐Fang
  orcidid: 0000-0003-4127-5038
  surname: Wang
  fullname: Wang, He‐Fang
  email: wanghefang@nankai.edu.cn
  organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition
BookMark eNo9kMFOwzAQRC0EElC4crbEBQ4Fr-OE-IhKaZDSFgl6jpxkXYxSuzhJq9zgD_hGvoRUoJ52Z2c0K71TcmidRUIugN0AY_y2XlXVDWccmAAZHpATiCAYRjGXh_sd2DE5ret3xgLg4u6EfD0779qaThSfB3SmrGvaHGv6gN5ssKTauxVdeFQ1_nx-T7E0qunPT7ZBr1VhVFV1vTHxbmvpLBETdTVPrvmoL9PO08Qs33p7rLUpDNqGJl3p3RItHW9c1TbG2TNypFVV4_n_HJDF4_h1lAzT-eRpdJ8O1yDicCjvcihQlBBHgAK1KLkGUHmvtNQKsFSKKxkGEguWBzzMS1mwGAUrZRgqFgzI5V_v2ruPFusme3ett_3LjEcgpORSxn1K_qW2psIuW3uzUr7LgGU7xtmOcbZnnL1M03Svgl837Xf9
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202104195
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202104195
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 21974072; 21575070
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-p1485-97b1ce4d1861e4ef4d2f11ab61ef9fa1edaa2a9539ec0b325bd9c08e40d955a03
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Thu Oct 10 16:14:28 EDT 2024
Sat Aug 24 00:58:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1485-97b1ce4d1861e4ef4d2f11ab61ef9fa1edaa2a9539ec0b325bd9c08e40d955a03
Notes Dedicated to the 100th Anniversary of Chemistry at Nankai University
ORCID 0000-0003-4127-5038
PQID 2614992998
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_journals_2614992998
wiley_primary_10_1002_smll_202104195_SMLL202104195
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2021; 8
2017; 7
2007; 19
2018; 342
2018; 122
2019; 9
2015; 6
2009; 43
2019; 5
2019; 31
2020; 383
2020; 262
2019; 11
1952; 74
2020; 380
2019; 58
2020; 324
2006; 5
2020; 14
2020; 76
2020; 10
2008; 92
2014; 43
2016; 4
2020; 8
2020; 7
2018; 9
2021; 15
2020; 5
2018; 5
2012; 134
2017; 92
2021; 410
2013; 35
2021; 411
2021; 17
2017; 56
2005; 109
2013; 135
2019; 433
2018; 30
2005; 17
2018; 10
2017; 543
2003; 41
2017; 203
2010; 9
References_xml – volume: 43
  start-page: 1250
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 13
  year: 2019
  publication-title: Nanomaterials
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 2882
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 262
  year: 2020
  publication-title: Appl. Catal., B
– volume: 543
  start-page: 234
  year: 2017
  publication-title: Nature
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1062
  year: 2020
  publication-title: Bioact. Mater.
– volume: 43
  year: 2014
  publication-title: Dalton Trans.
– volume: 342
  start-page: 519
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 1340
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 203
  start-page: 270
  year: 2017
  publication-title: Appl. Catal., B
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 146
  year: 2018
  publication-title: Beilstein J. Nanotechnol.
– volume: 11
  year: 2019
  publication-title: Mater. Today Phys.
– volume: 433
  year: 2019
  publication-title: J. Power Sources
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 50
  year: 2017
  publication-title: Nanomaterials
– volume: 7
  start-page: 3609
  year: 2020
  publication-title: Inorg. Chem. Front.
– volume: 17
  start-page: 314
  year: 2005
  publication-title: Adv. Mater.
– volume: 41
  start-page: 2527
  year: 2003
  publication-title: Carbon
– volume: 5
  start-page: 627
  year: 2006
  publication-title: Nat. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 74
  start-page: 719
  year: 1952
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 9317
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 324
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 485
  year: 2010
  publication-title: Nat. Mater.
– volume: 380
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 5
  year: 2018
  publication-title: Appl. Phys. Rev.
– volume: 15
  start-page: 6551
  year: 2021
  publication-title: ACS Nano
– volume: 14
  start-page: 4298
  year: 2020
  publication-title: ACS Nano
– volume: 19
  start-page: 3425
  year: 2007
  publication-title: Adv. Mater.
– volume: 410
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 816
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 362
  start-page: 311
  year: 2018
  publication-title: Science
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 112
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 92
  start-page: 654
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 7402
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 542
  year: 2019
  publication-title: J. Materiomics
SSID ssj0031247
Score 2.4570944
Snippet The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3...
The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysis
Ga 2O 3 nanotube
Gallium oxides
Hydrogen evolution
Nanoparticles
Nanotechnology
Nanotubes
NH 4Ga(OH) 2CO 3 nanotube
Precipitates
urease
Water splitting
Title Porous Ga2O3 Nanotubes Derived from Urease‐Mediated Interfacially‐Grown NH4Ga(OH)2CO3 for High‐Efficient Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202104195
https://www.proquest.com/docview/2614992998
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EW95YIAhbfxq4hFBaYQoIKBSt8ivLECDmhYJJvgDvpEv4TppS8sIW5wrR7Hj63uOc32M0KGKmW4YogJnGA145HSguZEBoN8sorGVsfNEsX3VSDr8oiu6U7v4K32IyYKb94xyvvYOrnRR_xENLZ4e_a8DoCycSL_LnLDI53Sd3U70oxgEr_J0FYhZgRfeGqs2hrQ-W30GX06j1DLMnC8jNX7BKrvkoTYc6Jp5-6Xd-J8WrKClEQbFJ9WgWUVzrreGFqeUCdfRx03ez4cFbil6zTBMwflgqF2Bz8D-4iz2u1Jwxye0u6_3z3Z53gfcLtcXM-WX4R9fwdDyJB9fJbyljq6TY3oKDwOUjH12CZibpX4FhD2cvNp-DmMZN19GvrCBOufN-9MkGJ3WEDwDpRKBjDQxjlsSN4jjLuOWZoQoDaVMZoo4qxRVUjDpTKgZFdpKE8aOh1YKoUK2ieZ7ec9tIRwbaxqxECLKvDmUkdUA68LMGAb0026jvfHXSkcuV6RABYG9QXSNtxEtuz19rgQ70kqamaa-w9NJh6d37cvLSWnnL5V20YK_rtJb9tD8oD90-wBSBvqgHIjf6QvjqA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO2LHBw5wCCRemviIoDRAWxBQiVvkLRdKg7pJcII_4Bv5EsZJW5YjHO2Ro8TxeOaNx28Q2pMRVWUdSM9qSjwWWuUppoUH3m8aksiIyDqgWG-U4ya7uOejbEJ3F6bghxgH3Jxm5Pu1U3AXkD76Yg3tPrbc2QFgFhYIPommQOepq95wejNmkKJgvvL6KmC1PEe9NeJt9MnRz_E_PMzvfmpuaM7mkRq9YpFf8nDY76lD_fKLvfFf37CA5oZuKD4u1s0imrDtJTT7jZxwGb1dZ52s38VVSa4ohl046_WV7eJTkA-swe5iCm66nHb78fpez0t-QHceYkyli8S3nkFQdTgfN2JWlftX8QE5gYeBo4xdggmIKzmFBVg-HD-bTgbLGVcGQ3VYQc2zyt1J7A0LNnhPgKq4J0IVaMtMEJUDy2zKDEmDQCpopSKVgTVSEik4FVb7ihKujNB-ZJlvBOfSp6uo1M7adg3hSBtdjjjnYerEvgiNAs_OT7WmgEDNOtoa_a5kqHXdBNAgADgwsNE6Ivm8J08FZ0dSsDOTxE14Mp7w5LZeq41bG38ZtIum47t6LamdNy430YzrL7JdtlCp1-nbbfBZemonX5WfG4DnwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGLagSAgOG2NDwBjzYYdxCCSOncRH1K-wtQUBlXqL_HkBmqpfEjvBP9hv5JfsddJ2LUc42q8cJY5fv89jv36M0A-RhDJSgfCMColHYyM9SRX3AP3amCSaJ8YRxXYnSrv0V4_1lk7xl_oQiwU35xnFfO0cfKDt2X_R0NHDvds6AMpCA87W0QaNAP46WHS9EJAKIXoV16tA0PKc8tZcttEnZ6vtVwDmMkwt4kzjIxLzNyzTS-5OJ2N5qv68Em98zyfsoA8zEIrPy1HzCa2Z_i7aXpIm_Iyer_JhPhnhpiCXIYY5OB9PpBnhGtinRmN3LAV3XUa7eXn62y4u_IDqYoHRCrcOf_8IhqZj-biT0qb4eZmekCo8DGAyduklYK4XAhYQ93D6qIc5DGZcn86c4QvqNuq31dSbXdfgDYBTMY_HMlCG6iCJAkONpZrYIBASSpZbERgtBBGchdwoX4aESc2Vnxjqa86Y8MM9VOnnfbOPcKK0ihLGWGyd2eexloDrfKtUCPxTH6Cj-d_KZj43yoALAn2D8JocIFJ0ezYoFTuyUpuZZK7Ds0WHZzftVmtROnxLo-9o86rWyFoXnd9f0ZarLlNdjlBlPJyYbwBYxvK4GJP_AIC05m8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Ga2O3+Nanotubes+Derived+from+Urease%E2%80%90Mediated+Interfacially%E2%80%90Grown+NH4Ga%28OH%292CO3+for+High%E2%80%90Efficient+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Ting&rft.au=Wang%2C+Zheng%E2%80%90Wu&rft.au=Zhang%2C+Ye&rft.au=Yang%2C+Xiao%E2%80%90Ting&rft.date=2021-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202104195&rft.externalDBID=10.1002%252Fsmll.202104195&rft.externalDocID=SMLL202104195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon