Porous Ga2O3 Nanotubes Derived from Urease‐Mediated Interfacially‐Grown NH4Ga(OH)2CO3 for High‐Efficient Hydrogen Evolution
The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipit...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 52 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark.
A novel biological strategy via NH4Ga(OH)2CO3 nanotube intermediate is presented for fabrication of Ga2O3 nanotube. All species from urea enzymolysis are subtly used for the interfacial growth of NH4Ga(OH)2CO3 nanotube in aqueous solution of gallium salts at 20–50 °C, and the balance between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation is the key point. |
---|---|
AbstractList | The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark. The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3 nanotubes. The subtlety of the proposed strategy is all the products from urea enzymolysis are utilized in formation of NH4Ga(OH)2CO3 precipitates, and the key for interfacial growth of NH4Ga(OH)2CO3 nanotubes is the dynamic match between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation. The proposed strategy works well for the doped porous Ga2O3 nanotubes. As a proof‐of‐concept, the porous β‐Ga2O3 and β‐Ga2O3:Cr0.001 nanotubes are used as photocatalysts or co‐catalysts with Pt, for H2 evolution from water splitting. The H2 evolution rate of porous β‐Ga2O3 nanotubes reach 39.3 mmol g−1 h−1 with solar‐to‐hydrogen (STH) conversion efficiency of 2.11% (Hg lamp) or 498 µmol g−1 h−1 with STH of 0.03% (Xe lamp) respectively, both about 3 times of β‐Ga2O3 nanoparticles synthesized at pH 9.0 without urease. The Cr‐doping enhances the in‐the‐dark H2 evolution rate pre‐lighted by Hg lamp, and Pt co‐catalysis further elevates the H2 evolution rate, for instance, the H2 evolution rate of Pt‐loaded β‐Ga2O3:Cr0.001 nanotubes reaches 54.7 mmol g−1 h−1 with STH of 2.94% under continuous lighting of Hg lamp and 1062 µmol g−1 h−1 in‐the‐dark. A novel biological strategy via NH4Ga(OH)2CO3 nanotube intermediate is presented for fabrication of Ga2O3 nanotube. All species from urea enzymolysis are subtly used for the interfacial growth of NH4Ga(OH)2CO3 nanotube in aqueous solution of gallium salts at 20–50 °C, and the balance between the rate of CO2 bubble fusion and NH4Ga(OH)2CO3 precipitation is the key point. |
Author | Zhu, Yi‐Zhou Wang, Ting Wang, He‐Fang Zhang, Ye Wang, Zheng‐Wu Yang, Xiao‐Ting |
Author_xml | – sequence: 1 givenname: Ting surname: Wang fullname: Wang, Ting organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition – sequence: 2 givenname: Zheng‐Wu surname: Wang fullname: Wang, Zheng‐Wu organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition – sequence: 3 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition – sequence: 4 givenname: Xiao‐Ting surname: Yang fullname: Yang, Xiao‐Ting organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition – sequence: 5 givenname: Yi‐Zhou surname: Zhu fullname: Zhu, Yi‐Zhou email: zhuyizhou@nankai.edu.cn organization: Nankai University – sequence: 6 givenname: He‐Fang orcidid: 0000-0003-4127-5038 surname: Wang fullname: Wang, He‐Fang email: wanghefang@nankai.edu.cn organization: Tianjin Key Laboratory of Biosensing and Molecular Recognition |
BookMark | eNo9kMFOwzAQRC0EElC4crbEBQ4Fr-OE-IhKaZDSFgl6jpxkXYxSuzhJq9zgD_hGvoRUoJ52Z2c0K71TcmidRUIugN0AY_y2XlXVDWccmAAZHpATiCAYRjGXh_sd2DE5ret3xgLg4u6EfD0779qaThSfB3SmrGvaHGv6gN5ssKTauxVdeFQ1_nx-T7E0qunPT7ZBr1VhVFV1vTHxbmvpLBETdTVPrvmoL9PO08Qs33p7rLUpDNqGJl3p3RItHW9c1TbG2TNypFVV4_n_HJDF4_h1lAzT-eRpdJ8O1yDicCjvcihQlBBHgAK1KLkGUHmvtNQKsFSKKxkGEguWBzzMS1mwGAUrZRgqFgzI5V_v2ruPFusme3ett_3LjEcgpORSxn1K_qW2psIuW3uzUr7LgGU7xtmOcbZnnL1M03Svgl837Xf9 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.202104195 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202104195 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 21974072; 21575070 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-p1485-97b1ce4d1861e4ef4d2f11ab61ef9fa1edaa2a9539ec0b325bd9c08e40d955a03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Thu Oct 10 16:14:28 EDT 2024 Sat Aug 24 00:58:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1485-97b1ce4d1861e4ef4d2f11ab61ef9fa1edaa2a9539ec0b325bd9c08e40d955a03 |
Notes | Dedicated to the 100th Anniversary of Chemistry at Nankai University |
ORCID | 0000-0003-4127-5038 |
PQID | 2614992998 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2614992998 wiley_primary_10_1002_smll_202104195_SMLL202104195 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2021; 8 2017; 7 2007; 19 2018; 342 2018; 122 2019; 9 2015; 6 2009; 43 2019; 5 2019; 31 2020; 383 2020; 262 2019; 11 1952; 74 2020; 380 2019; 58 2020; 324 2006; 5 2020; 14 2020; 76 2020; 10 2008; 92 2014; 43 2016; 4 2020; 8 2020; 7 2018; 9 2021; 15 2020; 5 2018; 5 2012; 134 2017; 92 2021; 410 2013; 35 2021; 411 2021; 17 2017; 56 2005; 109 2013; 135 2019; 433 2018; 30 2005; 17 2018; 10 2017; 543 2003; 41 2017; 203 2010; 9 |
References_xml | – volume: 43 start-page: 1250 year: 2009 publication-title: Environ. Sci. Technol. – volume: 76 year: 2020 publication-title: Nano Energy – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 13 year: 2019 publication-title: Nanomaterials – volume: 4 year: 2016 publication-title: J. Mater. Chem. C – volume: 10 start-page: 2882 year: 2020 publication-title: Catal. Sci. Technol. – volume: 262 year: 2020 publication-title: Appl. Catal., B – volume: 543 start-page: 234 year: 2017 publication-title: Nature – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 5 start-page: 1062 year: 2020 publication-title: Bioact. Mater. – volume: 43 year: 2014 publication-title: Dalton Trans. – volume: 342 start-page: 519 year: 2018 publication-title: J. Hazard. Mater. – volume: 58 start-page: 1340 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 17 year: 2021 publication-title: Small – volume: 203 start-page: 270 year: 2017 publication-title: Appl. Catal., B – volume: 10 year: 2018 publication-title: Nanoscale – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 9 start-page: 146 year: 2018 publication-title: Beilstein J. Nanotechnol. – volume: 11 year: 2019 publication-title: Mater. Today Phys. – volume: 433 year: 2019 publication-title: J. Power Sources – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 50 year: 2017 publication-title: Nanomaterials – volume: 7 start-page: 3609 year: 2020 publication-title: Inorg. Chem. Front. – volume: 17 start-page: 314 year: 2005 publication-title: Adv. Mater. – volume: 41 start-page: 2527 year: 2003 publication-title: Carbon – volume: 5 start-page: 627 year: 2006 publication-title: Nat. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 74 start-page: 719 year: 1952 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 9317 year: 2005 publication-title: J. Phys. Chem. B – volume: 324 year: 2020 publication-title: Sens. Actuators, B – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 9 start-page: 485 year: 2010 publication-title: Nat. Mater. – volume: 380 year: 2020 publication-title: Chem. Eng. J. – volume: 5 year: 2018 publication-title: Appl. Phys. Rev. – volume: 15 start-page: 6551 year: 2021 publication-title: ACS Nano – volume: 14 start-page: 4298 year: 2020 publication-title: ACS Nano – volume: 19 start-page: 3425 year: 2007 publication-title: Adv. Mater. – volume: 410 year: 2021 publication-title: Chem. Eng. J. – volume: 56 start-page: 816 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 362 start-page: 311 year: 2018 publication-title: Science – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 35 start-page: 112 year: 2013 publication-title: Electrochem. Commun. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 92 start-page: 654 year: 2017 publication-title: Biosens. Bioelectron. – volume: 6 start-page: 7402 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 542 year: 2019 publication-title: J. Materiomics |
SSID | ssj0031247 |
Score | 2.4570944 |
Snippet | The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3... The authors proposed a novel template‐free strategy, urease‐mediated interfacial growth of NH4Ga(OH)2CO3 nanotubes at 20–50 °C, to fabricate the porous Ga2O3... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Catalysis Ga 2O 3 nanotube Gallium oxides Hydrogen evolution Nanoparticles Nanotechnology Nanotubes NH 4Ga(OH) 2CO 3 nanotube Precipitates urease Water splitting |
Title | Porous Ga2O3 Nanotubes Derived from Urease‐Mediated Interfacially‐Grown NH4Ga(OH)2CO3 for High‐Efficient Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202104195 https://www.proquest.com/docview/2614992998 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EW95YIAhbfxq4hFBaYQoIKBSt8ivLECDmhYJJvgDvpEv4TppS8sIW5wrR7Hj63uOc32M0KGKmW4YogJnGA145HSguZEBoN8sorGVsfNEsX3VSDr8oiu6U7v4K32IyYKb94xyvvYOrnRR_xENLZ4e_a8DoCycSL_LnLDI53Sd3U70oxgEr_J0FYhZgRfeGqs2hrQ-W30GX06j1DLMnC8jNX7BKrvkoTYc6Jp5-6Xd-J8WrKClEQbFJ9WgWUVzrreGFqeUCdfRx03ez4cFbil6zTBMwflgqF2Bz8D-4iz2u1Jwxye0u6_3z3Z53gfcLtcXM-WX4R9fwdDyJB9fJbyljq6TY3oKDwOUjH12CZibpX4FhD2cvNp-DmMZN19GvrCBOufN-9MkGJ3WEDwDpRKBjDQxjlsSN4jjLuOWZoQoDaVMZoo4qxRVUjDpTKgZFdpKE8aOh1YKoUK2ieZ7ec9tIRwbaxqxECLKvDmUkdUA68LMGAb0026jvfHXSkcuV6RABYG9QXSNtxEtuz19rgQ70kqamaa-w9NJh6d37cvLSWnnL5V20YK_rtJb9tD8oD90-wBSBvqgHIjf6QvjqA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO2LHBw5wCCRemviIoDRAWxBQiVvkLRdKg7pJcII_4Bv5EsZJW5YjHO2Ro8TxeOaNx28Q2pMRVWUdSM9qSjwWWuUppoUH3m8aksiIyDqgWG-U4ya7uOejbEJ3F6bghxgH3Jxm5Pu1U3AXkD76Yg3tPrbc2QFgFhYIPommQOepq95wejNmkKJgvvL6KmC1PEe9NeJt9MnRz_E_PMzvfmpuaM7mkRq9YpFf8nDY76lD_fKLvfFf37CA5oZuKD4u1s0imrDtJTT7jZxwGb1dZ52s38VVSa4ohl046_WV7eJTkA-swe5iCm66nHb78fpez0t-QHceYkyli8S3nkFQdTgfN2JWlftX8QE5gYeBo4xdggmIKzmFBVg-HD-bTgbLGVcGQ3VYQc2zyt1J7A0LNnhPgKq4J0IVaMtMEJUDy2zKDEmDQCpopSKVgTVSEik4FVb7ihKujNB-ZJlvBOfSp6uo1M7adg3hSBtdjjjnYerEvgiNAs_OT7WmgEDNOtoa_a5kqHXdBNAgADgwsNE6Ivm8J08FZ0dSsDOTxE14Mp7w5LZeq41bG38ZtIum47t6LamdNy430YzrL7JdtlCp1-nbbfBZemonX5WfG4DnwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGLagSAgOG2NDwBjzYYdxCCSOncRH1K-wtQUBlXqL_HkBmqpfEjvBP9hv5JfsddJ2LUc42q8cJY5fv89jv36M0A-RhDJSgfCMColHYyM9SRX3AP3amCSaJ8YRxXYnSrv0V4_1lk7xl_oQiwU35xnFfO0cfKDt2X_R0NHDvds6AMpCA87W0QaNAP46WHS9EJAKIXoV16tA0PKc8tZcttEnZ6vtVwDmMkwt4kzjIxLzNyzTS-5OJ2N5qv68Em98zyfsoA8zEIrPy1HzCa2Z_i7aXpIm_Iyer_JhPhnhpiCXIYY5OB9PpBnhGtinRmN3LAV3XUa7eXn62y4u_IDqYoHRCrcOf_8IhqZj-biT0qb4eZmekCo8DGAyduklYK4XAhYQ93D6qIc5DGZcn86c4QvqNuq31dSbXdfgDYBTMY_HMlCG6iCJAkONpZrYIBASSpZbERgtBBGchdwoX4aESc2Vnxjqa86Y8MM9VOnnfbOPcKK0ihLGWGyd2eexloDrfKtUCPxTH6Cj-d_KZj43yoALAn2D8JocIFJ0ezYoFTuyUpuZZK7Ds0WHZzftVmtROnxLo-9o86rWyFoXnd9f0ZarLlNdjlBlPJyYbwBYxvK4GJP_AIC05m8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Ga2O3+Nanotubes+Derived+from+Urease%E2%80%90Mediated+Interfacially%E2%80%90Grown+NH4Ga%28OH%292CO3+for+High%E2%80%90Efficient+Hydrogen+Evolution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Ting&rft.au=Wang%2C+Zheng%E2%80%90Wu&rft.au=Zhang%2C+Ye&rft.au=Yang%2C+Xiao%E2%80%90Ting&rft.date=2021-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202104195&rft.externalDBID=10.1002%252Fsmll.202104195&rft.externalDocID=SMLL202104195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |