Behavior Recognition Based on Complex Linear Dynamic Systems

Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in...

Full description

Saved in:
Bibliographic Details
Published in11th EAI International Conference on Mobile Multimedia Communications p. 74
Main Authors Liu, Yun, Sun, Haifeng, Wang, Chuanxu, Zhang, Shujun
Format Conference Proceeding
LanguageEnglish
Published Qingdao European Alliance for Innovation (EAI) 01.01.2018
Subjects
Online AccessGet full text
ISBN1631901648
9781631901645
DOI10.4108/eai.21-6-2018.2276576

Cover

Abstract Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in the output matrix can not uniquely identify the characteristics of the corresponding system. In this paper, we propose complex linear dynamic systems to extract the "invariant" features of each time series. Firstly, describing the original video using motion boundary histogram (MBH). Then, we propose to model the motion dynamics with complex linear dynamical systems (CLDS) and use the model parameters as motion descriptors. Finally, the KNN classifier is used to classify it. Experiments with the KTH and UCF sports database show that our method is more accurate than the traditional linear dynamic system.
AbstractList Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in the output matrix can not uniquely identify the characteristics of the corresponding system. In this paper, we propose complex linear dynamic systems to extract the "invariant" features of each time series. Firstly, describing the original video using motion boundary histogram (MBH). Then, we propose to model the motion dynamics with complex linear dynamical systems (CLDS) and use the model parameters as motion descriptors. Finally, the KNN classifier is used to classify it. Experiments with the KTH and UCF sports database show that our method is more accurate than the traditional linear dynamic system.
Author Sun, Haifeng
Wang, Chuanxu
Zhang, Shujun
Liu, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
– sequence: 2
  givenname: Haifeng
  surname: Sun
  fullname: Sun, Haifeng
– sequence: 3
  givenname: Chuanxu
  surname: Wang
  fullname: Wang, Chuanxu
– sequence: 4
  givenname: Shujun
  surname: Zhang
  fullname: Zhang, Shujun
BookMark eNotjUlLAzEYQAMqaGt_gjDgecZ82QNebK0LDAgu55JtNNJJxslU7L-3oKf3Tu_N0HHKKSB0AbhhgNVVMLEhUIuaYFANIVJwKY7QDAQFjUEwdYoWpUSLqVYaNLAzdL0MH-Y75rF6Di6_pzjFnKqlKcFXB1nlftiGn6qNKZixut0n00dXvezLFPpyjk46sy1h8c85ertbv64e6vbp_nF109YDMC5qZUXnPHFSe2MUFo5Ry7kFR4QH21EApix1JAhBsJSSEgVKSdN5zAT3ms7R5V93GPPXLpRp85l3YzosN4RizjllmtBfnC5LJg
ContentType Conference Proceeding
Copyright Copyright European Alliance for Innovation (EAI) 2018
Copyright_xml – notice: Copyright European Alliance for Innovation (EAI) 2018
DBID 8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.4108/eai.21-6-2018.2276576
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Genre Conference Proceeding
GroupedDBID 8FE
8FG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p1456-8b6fcd2c79daa806c43b55b1c26d1bf31148b3c2e66207773281887afd0465d93
IEDL.DBID 8FG
ISBN 1631901648
9781631901645
IngestDate Fri Jul 25 04:25:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1456-8b6fcd2c79daa806c43b55b1c26d1bf31148b3c2e66207773281887afd0465d93
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink http://eudl.eu/pdf/10.4108/eai.21-6-2018.2276576
PQID 2305553492
PQPubID 4477160
ParticipantIDs proquest_journals_2305553492
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace Qingdao
PublicationPlace_xml – name: Qingdao
PublicationTitle 11th EAI International Conference on Mobile Multimedia Communications
PublicationYear 2018
Publisher European Alliance for Innovation (EAI)
Publisher_xml – name: European Alliance for Innovation (EAI)
SSID ssib039891914
Score 1.6669195
Snippet Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear...
SourceID proquest
SourceType Aggregation Database
StartPage 74
SubjectTerms Combinations (mathematics)
Dynamical systems
Electrons
Feature extraction
Histograms
Human behavior
Matrix methods
Permutations
Recognition
Transfer matrices
Title Behavior Recognition Based on Complex Linear Dynamic Systems
URI https://www.proquest.com/docview/2305553492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrwpVnzUkoPX1E2yyWZBEKqtRbCUYqG3kteCINvaB_jznexm7UHwtmFhIcnsfDOTzPchdAeez2Um9UTaPIMERXOitclhyAphOaXGhxPdt4kcz9PXhVjEgts2XqtsfGLlqN3Khhr5PauoqQKX3uP6iwTVqHC6GiU0jlGbAtIEO1ejl8aeeK5yWis7QdQRkE-mKtI8NWNRd_WkQQ3H648-o0SC5VDVZyyTIpN_fHQFPKNT1Dm05OHpL9icoSNfnqOHyG64wbPmHtCqxAMAJofhIfzrn_4bQ74J9oyfa_F5HEnKO2g-Gr4_jUmUQyBrCmEOUaEvxzGb5U5rlUibciOEoZZJR03BQ2ZjuGVeSpZkWWDhoeBCdOEgBxYu5xeoVa5Kf4kwxEw24YWjNrGp0RySJMOdtIoW1MDnr1C3mfQy2vR2ediB6_9f36CTsIJ1oaKLWrvN3t8CdO9Mr9qfHmoPhpPp7AcjYJWI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5Ke9CbYsVH1T3oMTW7m2wSUITaltY-KKWF3uq-AoIkta2of8rf6GyT2IPgrbcsgUBmZ2fm2935PoSuIfLpQHrG4SoKAKAI5gghIxjS2FeMEGnsie5gyDtT72nmz0rou-iFsdcqi5i4CdQ6VXaP_JZuqKksl97D4s2xqlH2dLWQ0Mjcome-PgCyre67TZjfG0rbrcljx8lVBZwFgWrBCW17i6YqiLQQocuVx6TvS6Io10TGzAIEyRQ1nFM3CCyZDYGVKGINUNLXlnwJQn7Fsx2tZVRptIajceHBLAojkmlJQZ1jcy33wpxYqhj7WR-RZ_V3jHipU-Jw8FUS1ikNuB_wP1lhk-raB6i6bQLEo9_0dohKJjlCdzmf4hKPi5tHaYIbkAo1hgcbXV7NJwaEC6bCzUzuHue06FU03YmpjlE5SRNzgjBUacplsSbKVZ4UDGCZZJqrkMREwudPUa346Xm-ilbz7Zyf_f_6Cu11JoP-vN8d9s7RvrVmtk1SQ-X18t1cQOGwlpf5bGH0vGsH-QHP89Dj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=11th+EAI+International+Conference+on+Mobile+Multimedia+Communications&rft.atitle=Behavior+Recognition+Based+on+Complex+Linear+Dynamic+Systems&rft.au=Liu%2C+Yun&rft.au=Sun%2C+Haifeng&rft.au=Wang%2C+Chuanxu&rft.au=Zhang%2C+Shujun&rft.date=2018-01-01&rft.pub=European+Alliance+for+Innovation+%28EAI%29&rft.isbn=9781631901645&rft.spage=74&rft_id=info:doi/10.4108%2Feai.21-6-2018.2276576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/sc.gif&client=summon&freeimage=true