Behavior Recognition Based on Complex Linear Dynamic Systems
Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in...
Saved in:
Published in | 11th EAI International Conference on Mobile Multimedia Communications p. 74 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
Qingdao
European Alliance for Innovation (EAI)
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISBN | 1631901648 9781631901645 |
DOI | 10.4108/eai.21-6-2018.2276576 |
Cover
Abstract | Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in the output matrix can not uniquely identify the characteristics of the corresponding system. In this paper, we propose complex linear dynamic systems to extract the "invariant" features of each time series. Firstly, describing the original video using motion boundary histogram (MBH). Then, we propose to model the motion dynamics with complex linear dynamical systems (CLDS) and use the model parameters as motion descriptors. Finally, the KNN classifier is used to classify it. Experiments with the KTH and UCF sports database show that our method is more accurate than the traditional linear dynamic system. |
---|---|
AbstractList | Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear dynamic system, the transfer matrix and the output matrix are subject to permutations, rotations, and linear combinations. Therefore, each row in the output matrix can not uniquely identify the characteristics of the corresponding system. In this paper, we propose complex linear dynamic systems to extract the "invariant" features of each time series. Firstly, describing the original video using motion boundary histogram (MBH). Then, we propose to model the motion dynamics with complex linear dynamical systems (CLDS) and use the model parameters as motion descriptors. Finally, the KNN classifier is used to classify it. Experiments with the KTH and UCF sports database show that our method is more accurate than the traditional linear dynamic system. |
Author | Sun, Haifeng Wang, Chuanxu Zhang, Shujun Liu, Yun |
Author_xml | – sequence: 1 givenname: Yun surname: Liu fullname: Liu, Yun – sequence: 2 givenname: Haifeng surname: Sun fullname: Sun, Haifeng – sequence: 3 givenname: Chuanxu surname: Wang fullname: Wang, Chuanxu – sequence: 4 givenname: Shujun surname: Zhang fullname: Zhang, Shujun |
BookMark | eNotjUlLAzEYQAMqaGt_gjDgecZ82QNebK0LDAgu55JtNNJJxslU7L-3oKf3Tu_N0HHKKSB0AbhhgNVVMLEhUIuaYFANIVJwKY7QDAQFjUEwdYoWpUSLqVYaNLAzdL0MH-Y75rF6Di6_pzjFnKqlKcFXB1nlftiGn6qNKZixut0n00dXvezLFPpyjk46sy1h8c85ertbv64e6vbp_nF109YDMC5qZUXnPHFSe2MUFo5Ry7kFR4QH21EApix1JAhBsJSSEgVKSdN5zAT3ms7R5V93GPPXLpRp85l3YzosN4RizjllmtBfnC5LJg |
ContentType | Conference Proceeding |
Copyright | Copyright European Alliance for Innovation (EAI) 2018 |
Copyright_xml | – notice: Copyright European Alliance for Innovation (EAI) 2018 |
DBID | 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.4108/eai.21-6-2018.2276576 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Genre | Conference Proceeding |
GroupedDBID | 8FE 8FG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-p1456-8b6fcd2c79daa806c43b55b1c26d1bf31148b3c2e66207773281887afd0465d93 |
IEDL.DBID | 8FG |
ISBN | 1631901648 9781631901645 |
IngestDate | Fri Jul 25 04:25:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1456-8b6fcd2c79daa806c43b55b1c26d1bf31148b3c2e66207773281887afd0465d93 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | http://eudl.eu/pdf/10.4108/eai.21-6-2018.2276576 |
PQID | 2305553492 |
PQPubID | 4477160 |
ParticipantIDs | proquest_journals_2305553492 |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Qingdao |
PublicationPlace_xml | – name: Qingdao |
PublicationTitle | 11th EAI International Conference on Mobile Multimedia Communications |
PublicationYear | 2018 |
Publisher | European Alliance for Innovation (EAI) |
Publisher_xml | – name: European Alliance for Innovation (EAI) |
SSID | ssib039891914 |
Score | 1.6669195 |
Snippet | Time dynamics is a very important part of human behavior recognition. The linear dynamic system can model the time dynamics, but in the traditional linear... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 74 |
SubjectTerms | Combinations (mathematics) Dynamical systems Electrons Feature extraction Histograms Human behavior Matrix methods Permutations Recognition Transfer matrices |
Title | Behavior Recognition Based on Complex Linear Dynamic Systems |
URI | https://www.proquest.com/docview/2305553492 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXrwpVnzUkoPX1E2yyWZBEKqtRbCUYqG3kteCINvaB_jznexm7UHwtmFhIcnsfDOTzPchdAeez2Um9UTaPIMERXOitclhyAphOaXGhxPdt4kcz9PXhVjEgts2XqtsfGLlqN3Khhr5PauoqQKX3uP6iwTVqHC6GiU0jlGbAtIEO1ejl8aeeK5yWis7QdQRkE-mKtI8NWNRd_WkQQ3H648-o0SC5VDVZyyTIpN_fHQFPKNT1Dm05OHpL9icoSNfnqOHyG64wbPmHtCqxAMAJofhIfzrn_4bQ74J9oyfa_F5HEnKO2g-Gr4_jUmUQyBrCmEOUaEvxzGb5U5rlUibciOEoZZJR03BQ2ZjuGVeSpZkWWDhoeBCdOEgBxYu5xeoVa5Kf4kwxEw24YWjNrGp0RySJMOdtIoW1MDnr1C3mfQy2vR2ediB6_9f36CTsIJ1oaKLWrvN3t8CdO9Mr9qfHmoPhpPp7AcjYJWI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5Ke9CbYsVH1T3oMTW7m2wSUITaltY-KKWF3uq-AoIkta2of8rf6GyT2IPgrbcsgUBmZ2fm2935PoSuIfLpQHrG4SoKAKAI5gghIxjS2FeMEGnsie5gyDtT72nmz0rou-iFsdcqi5i4CdQ6VXaP_JZuqKksl97D4s2xqlH2dLWQ0Mjcome-PgCyre67TZjfG0rbrcljx8lVBZwFgWrBCW17i6YqiLQQocuVx6TvS6Io10TGzAIEyRQ1nFM3CCyZDYGVKGINUNLXlnwJQn7Fsx2tZVRptIajceHBLAojkmlJQZ1jcy33wpxYqhj7WR-RZ_V3jHipU-Jw8FUS1ikNuB_wP1lhk-raB6i6bQLEo9_0dohKJjlCdzmf4hKPi5tHaYIbkAo1hgcbXV7NJwaEC6bCzUzuHue06FU03YmpjlE5SRNzgjBUacplsSbKVZ4UDGCZZJqrkMREwudPUa346Xm-ilbz7Zyf_f_6Cu11JoP-vN8d9s7RvrVmtk1SQ-X18t1cQOGwlpf5bGH0vGsH-QHP89Dj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=11th+EAI+International+Conference+on+Mobile+Multimedia+Communications&rft.atitle=Behavior+Recognition+Based+on+Complex+Linear+Dynamic+Systems&rft.au=Liu%2C+Yun&rft.au=Sun%2C+Haifeng&rft.au=Wang%2C+Chuanxu&rft.au=Zhang%2C+Shujun&rft.date=2018-01-01&rft.pub=European+Alliance+for+Innovation+%28EAI%29&rft.isbn=9781631901645&rft.spage=74&rft_id=info:doi/10.4108%2Feai.21-6-2018.2276576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781631901645/sc.gif&client=summon&freeimage=true |