Invariant Measure of Stochastic 3D Globally Modified Navier–Stokes Equations with Infinite Varying Delay
This paper is concerned with the asymptotic dynamics of a stochastic 3 D globally modified Navier–Stokes equations with additive white noise and infinite varying delay. Based on the technically established pullback random absorbing set, we first show the existence and uniqueness of pullback random a...
Saved in:
Published in | Bulletin of the Malaysian Mathematical Sciences Society Vol. 48; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the asymptotic dynamics of a stochastic
3
D
globally modified Navier–Stokes equations with additive white noise and infinite varying delay. Based on the technically established pullback random absorbing set, we first show the existence and uniqueness of pullback random attractor for such equations. The asymptotic compactness of solutions is verified by mainly employing an energy method over the time compact interval, as well as a limit argument at the negative infinite part. Then by proving the joint continuity of solutions with respect to the initial time and initial data, we eventually construct a family of invariant Borel probability measures supported by the derived pullback random attractor. |
---|---|
AbstractList | This paper is concerned with the asymptotic dynamics of a stochastic 3D globally modified Navier–Stokes equations with additive white noise and infinite varying delay. Based on the technically established pullback random absorbing set, we first show the existence and uniqueness of pullback random attractor for such equations. The asymptotic compactness of solutions is verified by mainly employing an energy method over the time compact interval, as well as a limit argument at the negative infinite part. Then by proving the joint continuity of solutions with respect to the initial time and initial data, we eventually construct a family of invariant Borel probability measures supported by the derived pullback random attractor. This paper is concerned with the asymptotic dynamics of a stochastic 3 D globally modified Navier–Stokes equations with additive white noise and infinite varying delay. Based on the technically established pullback random absorbing set, we first show the existence and uniqueness of pullback random attractor for such equations. The asymptotic compactness of solutions is verified by mainly employing an energy method over the time compact interval, as well as a limit argument at the negative infinite part. Then by proving the joint continuity of solutions with respect to the initial time and initial data, we eventually construct a family of invariant Borel probability measures supported by the derived pullback random attractor. |
Author | Liu, Hao Zhao, Wenqiang Liu, Xia |
Author_xml | – sequence: 1 givenname: Wenqiang orcidid: 0000-0003-4276-2399 surname: Zhao fullname: Zhao, Wenqiang email: zhaowq@ctbu.edu.cn organization: School of Mathematics and Statistics, Chongqing Technology and Business University – sequence: 2 givenname: Hao surname: Liu fullname: Liu, Hao organization: School of Mathematics and Statistics, Chongqing Technology and Business University – sequence: 3 givenname: Xia surname: Liu fullname: Liu, Xia organization: School of Mathematics and Statistics, Chongqing Technology and Business University |
BookMark | eNpFkMtOwzAQRS1UJErpD7CyxNrgV-xkidpSKhVY8NhGTmxTl8hu46SoO_6BP-RLMBSJ2czm3DujcwoGPngDwDnBlwRjeRU5zjlGmGYIk7xgSB6BISU5RpxiMQBDTKhAQuLsBIxjXOM0maCCkiFYL_xOtU75Dt4ZFfvWwGDhYxfqlYqdqyGbwnkTKtU0e3gXtLPOaHivds60Xx-fCXwzEc62vepc8BG-u24FF9467zoDX1S7d_4VTk2j9mfg2KommvHfHoHnm9nT5BYtH-aLyfUSbQjnEjHNK24tJ4xaUTCJhTUmq6UusNJZXlUir6WtNbNcyULnhuUVT0GcycIUmrIRuDj0btqw7U3synXoW59OlowmVQWlqXcE2IGKmza9aNp_iuDyx2t58Fomr-Wv11Kybzs2bhA |
ContentType | Journal Article |
Copyright | Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2025. |
Copyright_xml | – notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2025. |
DOI | 10.1007/s40840-025-01893-7 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2180-4206 |
ExternalDocumentID | 10_1007_s40840_025_01893_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11871122 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS P2P REM TN5 |
ID | FETCH-LOGICAL-p1447-3d4b4ff4132f693706fee5c7d90ad58bb68c7fcd3f4a79d8e38b44470579e9d23 |
IEDL.DBID | AGYKE |
ISSN | 0126-6705 |
IngestDate | Wed Aug 20 00:32:42 EDT 2025 Tue Aug 19 01:10:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 37L55 Energy method Invariant Borel probability measure Pullback random attractor Non-autonomous 3D globally modified Navier–Stokes equations 35B41 37L40 Infinite varying delay 37L30 60H15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1447-3d4b4ff4132f693706fee5c7d90ad58bb68c7fcd3f4a79d8e38b44470579e9d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4276-2399 |
PQID | 3240892269 |
PQPubID | 1006356 |
ParticipantIDs | proquest_journals_3240892269 springer_journals_10_1007_s40840_025_01893_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Bulletin of the Malaysian Mathematical Sciences Society |
PublicationTitleAbbrev | Bull. Malays. Math. Sci. Soc |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
SSID | ssj0000562621 ssj0000562622 |
Score | 2.339748 |
Snippet | This paper is concerned with the asymptotic dynamics of a stochastic
3
D
globally modified Navier–Stokes equations with additive white noise and infinite... This paper is concerned with the asymptotic dynamics of a stochastic 3D globally modified Navier–Stokes equations with additive white noise and infinite... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Applications of Mathematics Asymptotic methods Asymptotic properties Energy methods Fluid flow Invariants Mathematics Mathematics and Statistics Navier-Stokes equations White noise |
Title | Invariant Measure of Stochastic 3D Globally Modified Navier–Stokes Equations with Infinite Varying Delay |
URI | https://link.springer.com/article/10.1007/s40840-025-01893-7 https://www.proquest.com/docview/3240892269 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsMwGLagLDBwI87KAyOp3FyOx3KUAkoXKCpT5PgQpSiFpkUqE-_AG_Ik_M7RioqlYxQ7Sn47_j7_x2eETjnANo9Z3ZJMBJYrBLFi22eWJspjRGmmlfFDhm2_1XFvu163KApLy2z3MiSZrdTTYjeXBCYV0TbJZoCyFl1GK8A_iFtBK43rp7uZb8WAul_A0uw6CyjUbd_yKfGK-pn_H_yHbc4FSDPcaW6gTvnGebpJvzYexTXxOSfmuOgnbaL1gojiRj5zttCSSrbRWjhVcU130MtN8gFbabA9DnNXIh5ofD8aiGdu5J2xc4nzMwNeJzgcyJ4GPovb3EDtz9c3NOyrFF-952riKTY-X3yT6J7hufiRD02JFb5Ur3yyizrNq4eLllWczWC9wRYM1iXpxq7WAIG29oHiEF8r5QkqGeHSC-LYDwTVQjra5ZTJQDlB7EJHU_uqmLSdPVRJBonaR5hoxhmXsNWkRrpSBlR7TChbUyV1nZIDdFyORlT8YGlkdAQDBtyRHaCz0riz21Mx5szCEVg4yiwc0cPFmh-hVTsbH5NVdowqo-FYnQANGcVVmHXN8_N2tZh9v0Ij1R4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgHYCBN6JQwAMjQW6axPFYAaUF0gWKYIocP0RplULTIpWJf-AP-RKu82gFYmGMYkfJteNz7vW9xwgdc4BtHrGaJZnwLUcIYkW2xyxNlMuI0kwrE4cMOl6r61w9uA95UVhSZLsXW5LpSj0rdnOIb1IRbZNsBihr0UVUdsAHh3ldblw-Xs9jKwbUvRyW5tfphkLN9iyPEjevn_n7wT_Y5q8N0hR3mmuoW7xxlm7SP52Mo1Px_kvM8b-ftI5WcyKKG9nM2UALKt5EK8FMxTXZQs_t-A1cabA9DrJQIh5qfDseiidu5J1x_RxnZwYMpjgYyp4GPos73EDt18cnNOyrBF-8ZmriCTYxX9yOdc_wXHzPR6bECp-rAZ9uo27z4u6sZeVnM1gv4ILBuiSdyNEaINDWHlAc4mmlXEElI1y6fhR5vqBayLp2OGXSV3U_cqCjqX1VTNr1HVSKh7HaRZhoxhmX4GpSI10pfapdJpStqZK6RkkFVYvRCPMfLAmNjqDPgDuyCjopjDu_PRNjTi0cgoXD1MIh3ftf8yO01LoLbsKbdud6Hy3b6ViZDLMqKo1HE3UAlGQcHeYz8Bu4utaR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFl9YEjATdN4viIKIUCrZBYBKfIsT2igNJCAxKc-Af-kC_BTtIWEBfEMYoTJTNO3vMszwCbwsC2iHnFUVyGjicldWI34A5S7XOqkaO2cchmKzi88I6u_KsvXfxZtXs_JZn3NFiVpiTd6SrcGTS-eTS0ZYmuLTwziOuwURjzrLZdCcZ2D66Ph3EWC_BBAVHD4yy5UHEDJ2DUL3ppfr_xN-b5I1maYVB9GkT_6fPSk7vtpzTelq8_hB3_83ozMFUQVLKbz6hZGNHJHEw2B-quvXm4bSTPZoltfEKaeYiRdJCcpR15I6zsM6nWSL6XwP0LaXZUGw3PJS1hIfjj7d0MvNM9sv-Qq4z3iI0Fk0aCbct_yaV4tK1XpKbvxcsCXNT3z_cOnWLPBqdrlmbmf6W82EM00OhiYKgPDVBrXzLFqVB-GMdBKBlKVUVPMK5CXQ1jz1xoe2I1V251EUpJJ9FLQChywYUyS1BmJS1VyNDnUrvItMIKo2VY7XsmKj68XmT1BUNuOCUvw1bf0MPTA5HmzMKRsXCUWThiy38bvgHjp7V6dNJoHa_AhJu5yhaerUIpfXzSa4appPF6MRk_AcuM33U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invariant+Measure+of+Stochastic+3D+Globally+Modified+Navier%E2%80%93Stokes+Equations+with+Infinite+Varying+Delay&rft.jtitle=Bulletin+of+the+Malaysian+Mathematical+Sciences+Society&rft.au=Zhao%2C+Wenqiang&rft.au=Liu%2C+Hao&rft.au=Liu%2C+Xia&rft.date=2025-09-01&rft.pub=Springer+Nature+Singapore&rft.issn=0126-6705&rft.eissn=2180-4206&rft.volume=48&rft.issue=5&rft_id=info:doi/10.1007%2Fs40840-025-01893-7&rft.externalDocID=10_1007_s40840_025_01893_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0126-6705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0126-6705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0126-6705&client=summon |