Inactivation of Cell Division Protein FtsZ by SulA Makes Lon Indispensable for the Viability of a ppGpp0 Strain of Escherichia coli

The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppG...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 198; no. 4; pp. 688 - 700
Main Authors Nazir, Aanisa, Harinarayanan, Rajendran
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 07.12.2015
Subjects
Online AccessGet full text
ISSN1098-5530
0021-9193
1098-5530
DOI10.1128/JB.00693-15

Cover

Abstract The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
AbstractList The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA.UNLABELLEDThe modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA.The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.IMPORTANCEThe physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp 0 ) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp 0 strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp 0 strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp 0 Δ lon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. IMPORTANCE The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli . These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp0) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp0 strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp0 strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp0 Delta lon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. IMPORTANCE The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
Author Harinarayanan, Rajendran
Nazir, Aanisa
Author_xml – sequence: 1
  givenname: Aanisa
  surname: Nazir
  fullname: Nazir, Aanisa
  organization: Laboratory of Bacterial Genetics, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India Graduate Studies, Manipal University, Manipal, India
– sequence: 2
  givenname: Rajendran
  surname: Harinarayanan
  fullname: Harinarayanan, Rajendran
  email: hari@cdfd.org.in
  organization: Laboratory of Bacterial Genetics, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India hari@cdfd.org.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26644431$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1PwzAQxS0EorQwsSOPLAE7tmN3QSqlhaIikPgYWCLHcehBaoc4rdSZf5yUL8HGdKd7T797uuuiTeedRWifkiNKY3V8eXpESNJnERUbaIeSvoqEYGTzV99B3RCeCaGci3gbdeIk4ZwzuoPeJk6bBpa6Ae-wL_DQliU-gyWE9eCm9o0Fh8dNeMTZCt8uygG-0i824GkrT1wOobIu6Ky0uPA1bmYWP4DOoIRmteZpXFXnVUXwbVNr-FgxCmZmazAz0Nj4EnbRVqHLYPe-ag_dj0d3w4toen0-GQ6mUdXm5lFSSJsYmTCSc6FlFvcJF7lUmabSUKWoVVJQzhIhYsJYLk2R84xqynOtMitZD518cqtFNre5sa6NVKZVDXNdr1KvIf2rOJilT36Z8parCG8Bh1-A2r8ubGjSOQTTHkw76xchpTJRQhImxX-slMtY9uPWevA71k-e7yexd0T9lOE
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
C1K
5PM
DOI 10.1128/JB.00693-15
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic

MEDLINE
Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Regulation of Cell Division by (p)ppGpp in E. coli
EISSN 1098-5530
EndPage 700
ExternalDocumentID PMC4751804
26644431
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Biotechnology, Ministry of Science and Technology, India
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
NPM
O9-
OK1
P-S
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
X7M
YIN
YQT
YR2
YZZ
ZCA
~02
~KM
7X8
AAGFI
7QL
C1K
5PM
ID FETCH-LOGICAL-p1444-6f7e6c7630d45a7b29045d78ba17c1881e8751436552033d7cfd4b1a14da8be73
ISSN 1098-5530
0021-9193
IngestDate Thu Aug 21 18:06:14 EDT 2025
Thu Sep 04 15:10:18 EDT 2025
Fri Sep 05 09:09:20 EDT 2025
Wed Feb 19 01:59:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1444-6f7e6c7630d45a7b29045d78ba17c1881e8751436552033d7cfd4b1a14da8be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Nazir A, Harinarayanan R. 2016. Inactivation of cell division protein FtsZ by SulA makes Lon indispensable for the viability of a ppGpp0 strain of Escherichia coli. J Bacteriol 198:688–700. doi:10.1128/JB.00693-15.
PMID 26644431
PQID 1761472792
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4751804
proquest_miscellaneous_1768570375
proquest_miscellaneous_1761472792
pubmed_primary_26644431
PublicationCentury 2000
PublicationDate 2015-Dec-07
PublicationDateYYYYMMDD 2015-12-07
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90
1563353 - EMBO J. 1992 Apr;11(4):1493-501
15294154 - Cell. 2004 Aug 6;118(3):281-4
16343907 - Trends Microbiol. 2006 Jan;14(1):45-54
10809694 - J Bacteriol. 2000 Jun;182(11):3151-7
2694929 - Annu Rev Genet. 1989;23:163-98
6991869 - Mol Gen Genet. 1980;177(4):629-36
15165230 - Mol Microbiol. 2004 Jun;52(5):1255-69
15066282 - Cell. 2004 Apr 2;117(1):57-68
2996784 - Cell. 1985 Oct;42(3):941-9
2460731 - Mol Gen Genet. 1988 Aug;213(2-3):214-22
15009896 - Mol Microbiol. 2004 Mar;51(6):1705-17
4576025 - Proc Natl Acad Sci U S A. 1973 May;70(5):1564-8
2645057 - Cell. 1989 Feb 24;56(4):641-9
16467149 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2374-9
12062810 - Gene. 2002 May 15;290(1-2):153-61
20508246 - Microbiol Mol Biol Rev. 2010 Jun;74(2):171-99
9882665 - J Bacteriol. 1999 Jan;181(2):508-20
10368141 - J Bacteriol. 1999 Jun;181(12):3681-7
17496080 - J Bacteriol. 2007 Jul;189(14):5193-202
21815973 - Plant Biol (Stuttg). 2011 Sep;13(5):699-709
23623685 - Mol Cell. 2013 May 9;50(3):430-6
1698623 - EMBO J. 1990 Nov;9(11):3787-94
7504290 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11004-8
10725385 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3747-52
12023304 - Genes Dev. 2002 May 15;16(10):1260-70
14665623 - J Biol Chem. 2004 Feb 27;279(9):8140-8
10339542 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):6064-71
10368140 - J Bacteriol. 1999 Jun;181(12):3674-80
17078815 - Mol Microbiol. 2006 Nov;62(4):1048-63
4920154 - Mol Gen Genet. 1970;108(3):249-57
3549709 - J Biol Chem. 1987 Apr 5;262(10):4508-15
13611202 - J Gen Microbiol. 1958 Dec;19(3):592-606
15899978 - Proc Natl Acad Sci U S A. 2005 May 31;102(22):7823-8
7746147 - Mol Microbiol. 1995 Jan;15(2):255-65
8730877 - Mol Microbiol. 1996 Mar;19(6):1373-84
16769691 - DNA Res. 2005;12(5):291-9
23207918 - Genes Dev. 2012 Dec 1;26(23):2634-46
22814757 - EMBO Rep. 2012 Sep;13(9):835-9
783136 - J Bacteriol. 1976 Sep;127(3):1208-16
15916962 - Mol Cell. 2005 May 27;18(5):555-64
21730169 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):E365-73
12700262 - J Bacteriol. 2003 May;185(9):2826-34
9501189 - Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2908-13
20478253 - Cell. 2010 May 14;141(4):595-605
16738554 - Mol Syst Biol. 2006;2:2006.0008
22575476 - Curr Biol. 2012 May 8;22(9):R340-9
15294156 - Cell. 2004 Aug 6;118(3):297-309
14124942 - Genetics. 1964 Feb;49:237-46
21119015 - Microbiol Mol Biol Rev. 2010 Dec;74(4):504-28
7789817 - Gene. 1995 May 26;158(1):9-14
22432817 - Biochemistry. 2012 Apr 10;51(14):3100-9
6300834 - Proc Natl Acad Sci U S A. 1983 Jan;80(2):358-62
18454629 - Annu Rev Microbiol. 2008;62:35-51
7815948 - Mol Microbiol. 1994 Sep;13(5):911-7
23620295 - Nucleic Acids Res. 2013 Jul;41(12):6175-89
9495742 - J Bacteriol. 1998 Mar;180(5):1053-62
2045370 - J Bacteriol. 1991 Jun;173(11):3500-6
9864306 - J Bacteriol. 1999 Jan;181(1):9-14
23623682 - Mol Cell. 2013 May 9;50(3):420-9
23877429 - EMBO Rep. 2013 Sep;14(9):811-6
12419222 - Mol Cell. 2002 Oct;10(4):779-88
18430135 - Mol Microbiol. 2008 Jun;68(5):1128-48
16026164 - Biochemistry. 2005 Jul 26;44(29):9913-23
17071757 - J Bacteriol. 2007 Jan;189(1):98-108
10995231 - Biochemistry. 2000 Sep 26;39(38):11640-8
9723920 - Mol Microbiol. 1998 Aug;29(3):815-23
10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83
16854568 - Res Microbiol. 2006 Oct;157(8):701-13
1400163 - J Bacteriol. 1992 Oct;174(19):6145-51
12003927 - J Bacteriol. 2002 Jun;184(11):2878-88
2180916 - J Bacteriol. 1990 Apr;172(4):2055-64
22056927 - J Bacteriol. 2012 Jan;194(2):261-73
18039766 - J Bacteriol. 2008 Feb;190(3):1084-96
18532980 - Mol Microbiol. 2008 Aug;69(4):882-94
6217898 - Cell. 1982 Jul;29(3):939-44
15294157 - Cell. 2004 Aug 6;118(3):311-22
21858139 - PLoS One. 2011;6(8):e23479
10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents
10778854 - Cell. 2000 Mar 31;101(1):35-45
6296040 - J Bacteriol. 1983 Feb;153(2):1072-4
8407846 - J Bacteriol. 1993 Oct;175(20):6704-10
15866041 - Trends Microbiol. 2005 May;13(5):236-42
16153174 - Annu Rev Microbiol. 2005;59:379-405
1095568 - J Biol Chem. 1975 Jan 10;250(1):304-9
24874800 - Bioengineered. 2014 Jul-Aug;5(4):264-8
22200485 - J Mol Biol. 2012 Mar 2;416(4):503-17
18550539 - J Biol Chem. 2008 Aug 22;283(34):22918-29
4937124 - J Biol Chem. 1971 Jul 25;246(14):4381-5
7608079 - J Bacteriol. 1995 Jul;177(14):4053-8
1093696 - Cell. 1975 May;5(1):69-74
18245292 - J Bacteriol. 2008 Apr;190(7):2513-26
15853883 - Mol Microbiol. 2005 May;56(4):958-70
14712731 - Methods Enzymol. 2003;371:596-601
References_xml – reference: 15866041 - Trends Microbiol. 2005 May;13(5):236-42
– reference: 10995231 - Biochemistry. 2000 Sep 26;39(38):11640-8
– reference: 15294154 - Cell. 2004 Aug 6;118(3):281-4
– reference: 6300834 - Proc Natl Acad Sci U S A. 1983 Jan;80(2):358-62
– reference: 16854568 - Res Microbiol. 2006 Oct;157(8):701-13
– reference: 22200485 - J Mol Biol. 2012 Mar 2;416(4):503-17
– reference: 18245292 - J Bacteriol. 2008 Apr;190(7):2513-26
– reference: 10778854 - Cell. 2000 Mar 31;101(1):35-45
– reference: 10339542 - Proc Natl Acad Sci U S A. 1999 May 25;96(11):6064-71
– reference: 1400163 - J Bacteriol. 1992 Oct;174(19):6145-51
– reference: 15165230 - Mol Microbiol. 2004 Jun;52(5):1255-69
– reference: 15899978 - Proc Natl Acad Sci U S A. 2005 May 31;102(22):7823-8
– reference: 21119015 - Microbiol Mol Biol Rev. 2010 Dec;74(4):504-28
– reference: 2045370 - J Bacteriol. 1991 Jun;173(11):3500-6
– reference: 8407846 - J Bacteriol. 1993 Oct;175(20):6704-10
– reference: 10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83
– reference: 4920154 - Mol Gen Genet. 1970;108(3):249-57
– reference: 9882665 - J Bacteriol. 1999 Jan;181(2):508-20
– reference: 7815948 - Mol Microbiol. 1994 Sep;13(5):911-7
– reference: 9495742 - J Bacteriol. 1998 Mar;180(5):1053-62
– reference: 20508246 - Microbiol Mol Biol Rev. 2010 Jun;74(2):171-99
– reference: 24874800 - Bioengineered. 2014 Jul-Aug;5(4):264-8
– reference: 18039766 - J Bacteriol. 2008 Feb;190(3):1084-96
– reference: 14665623 - J Biol Chem. 2004 Feb 27;279(9):8140-8
– reference: 17496080 - J Bacteriol. 2007 Jul;189(14):5193-202
– reference: 21815973 - Plant Biol (Stuttg). 2011 Sep;13(5):699-709
– reference: 18430135 - Mol Microbiol. 2008 Jun;68(5):1128-48
– reference: 22575476 - Curr Biol. 2012 May 8;22(9):R340-9
– reference: 3549709 - J Biol Chem. 1987 Apr 5;262(10):4508-15
– reference: 18454629 - Annu Rev Microbiol. 2008;62:35-51
– reference: 6296040 - J Bacteriol. 1983 Feb;153(2):1072-4
– reference: 22814757 - EMBO Rep. 2012 Sep;13(9):835-9
– reference: 17078815 - Mol Microbiol. 2006 Nov;62(4):1048-63
– reference: 7746147 - Mol Microbiol. 1995 Jan;15(2):255-65
– reference: 2996784 - Cell. 1985 Oct;42(3):941-9
– reference: 783136 - J Bacteriol. 1976 Sep;127(3):1208-16
– reference: 9501189 - Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2908-13
– reference: 15853883 - Mol Microbiol. 2005 May;56(4):958-70
– reference: 22056927 - J Bacteriol. 2012 Jan;194(2):261-73
– reference: 10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents
– reference: 16026164 - Biochemistry. 2005 Jul 26;44(29):9913-23
– reference: 15066282 - Cell. 2004 Apr 2;117(1):57-68
– reference: 6991869 - Mol Gen Genet. 1980;177(4):629-36
– reference: 4937124 - J Biol Chem. 1971 Jul 25;246(14):4381-5
– reference: 7608079 - J Bacteriol. 1995 Jul;177(14):4053-8
– reference: 2460731 - Mol Gen Genet. 1988 Aug;213(2-3):214-22
– reference: 17071757 - J Bacteriol. 2007 Jan;189(1):98-108
– reference: 14712731 - Methods Enzymol. 2003;371:596-601
– reference: 2180916 - J Bacteriol. 1990 Apr;172(4):2055-64
– reference: 1698623 - EMBO J. 1990 Nov;9(11):3787-94
– reference: 12062810 - Gene. 2002 May 15;290(1-2):153-61
– reference: 2694929 - Annu Rev Genet. 1989;23:163-98
– reference: 9723920 - Mol Microbiol. 1998 Aug;29(3):815-23
– reference: 23877429 - EMBO Rep. 2013 Sep;14(9):811-6
– reference: 7789817 - Gene. 1995 May 26;158(1):9-14
– reference: 8730877 - Mol Microbiol. 1996 Mar;19(6):1373-84
– reference: 16738554 - Mol Syst Biol. 2006;2:2006.0008
– reference: 1563353 - EMBO J. 1992 Apr;11(4):1493-501
– reference: 23623685 - Mol Cell. 2013 May 9;50(3):430-6
– reference: 12419222 - Mol Cell. 2002 Oct;10(4):779-88
– reference: 15916962 - Mol Cell. 2005 May 27;18(5):555-64
– reference: 7504290 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11004-8
– reference: 23620295 - Nucleic Acids Res. 2013 Jul;41(12):6175-89
– reference: 10725385 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3747-52
– reference: 12003927 - J Bacteriol. 2002 Jun;184(11):2878-88
– reference: 10809694 - J Bacteriol. 2000 Jun;182(11):3151-7
– reference: 23623682 - Mol Cell. 2013 May 9;50(3):420-9
– reference: 20478253 - Cell. 2010 May 14;141(4):595-605
– reference: 23207918 - Genes Dev. 2012 Dec 1;26(23):2634-46
– reference: 18550539 - J Biol Chem. 2008 Aug 22;283(34):22918-29
– reference: 21730169 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):E365-73
– reference: 15009896 - Mol Microbiol. 2004 Mar;51(6):1705-17
– reference: 15294156 - Cell. 2004 Aug 6;118(3):297-309
– reference: 1093696 - Cell. 1975 May;5(1):69-74
– reference: 10368141 - J Bacteriol. 1999 Jun;181(12):3681-7
– reference: 16153174 - Annu Rev Microbiol. 2005;59:379-405
– reference: 4576025 - Proc Natl Acad Sci U S A. 1973 May;70(5):1564-8
– reference: 21858139 - PLoS One. 2011;6(8):e23479
– reference: 2645057 - Cell. 1989 Feb 24;56(4):641-9
– reference: 12700262 - J Bacteriol. 2003 May;185(9):2826-34
– reference: 16343907 - Trends Microbiol. 2006 Jan;14(1):45-54
– reference: 16769691 - DNA Res. 2005;12(5):291-9
– reference: 2005134 - J Biol Chem. 1991 Mar 25;266(9):5980-90
– reference: 14124942 - Genetics. 1964 Feb;49:237-46
– reference: 15294157 - Cell. 2004 Aug 6;118(3):311-22
– reference: 12023304 - Genes Dev. 2002 May 15;16(10):1260-70
– reference: 9864306 - J Bacteriol. 1999 Jan;181(1):9-14
– reference: 22432817 - Biochemistry. 2012 Apr 10;51(14):3100-9
– reference: 6217898 - Cell. 1982 Jul;29(3):939-44
– reference: 1095568 - J Biol Chem. 1975 Jan 10;250(1):304-9
– reference: 18532980 - Mol Microbiol. 2008 Aug;69(4):882-94
– reference: 10368140 - J Bacteriol. 1999 Jun;181(12):3674-80
– reference: 16467149 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2374-9
– reference: 13611202 - J Gen Microbiol. 1958 Dec;19(3):592-606
SSID ssj0014452
Score 2.1618898
Snippet The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 688
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cell Division
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Escherichia coli
Escherichia coli - cytology
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Guanosine Tetraphosphate - metabolism
Microbial Viability
Protease La - genetics
Protease La - metabolism
Title Inactivation of Cell Division Protein FtsZ by SulA Makes Lon Indispensable for the Viability of a ppGpp0 Strain of Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/26644431
https://www.proquest.com/docview/1761472792
https://www.proquest.com/docview/1768570375
https://pubmed.ncbi.nlm.nih.gov/PMC4751804
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCImXiW_Kl4zEW5VRJ06cPI7RbkxdkaBFFS-RHTsiMKVR0yJ1r_zj3MVpmqCCBi9R5UZO6_v5cr673x0hr43HXeVz7gQJNw7XLnMkIMlhCQsNSxPmK_RDXkyCsxk_n_vzXdpYxS5ZqaPkai-v5H-kCmMgV2TJ_oNkm0lhAD6DfOEKEobrtWT8Pkdawo_G6jtBR9y7zPLFkQOArSz7o1X5Ba3MT-vL4_6F_G7K_niBvkCdlQWcYivy1Dbb8HNmC3dvLHGyKE6LYoCxa5lVjxiWKOUMM6T7gKHsD8atskWgOz77ibzKbOtsiSH0ne5bIidYbmTdKvmj_GZyvaxhW3skmF9ld4i2lsW0D2Y7Hx4Zq1ixbim2KOpo3ihsQYy39Ghge_3Vr2RRFTPdo-1dZDCcv8XkvMhzLC-0W1N78iEezcbjeDqcT2-SW64QVTD_dN4kAsGJ0q9ryttfXbM4YfI3ran3nUB-T6RtWSbTu-SwXnV6bPFxj9ww-X1y2zYZ3TwgP9sooYuUIkroFiW0RglFlFC1oYgSWqGEAkpoByUUUEIBJbRBCc4nqUUJtSjBoRZKKKLkIZmNhtOTM6duveEUsB6wc1NhggTePQPNfSmUG4Hpr0WoJBOwi0Nm4JwLpnbg--7A87RIUs0Vk4xrGSojvEfkIF_k5gmhQRTqCFMIgrSyFqVRiQYxhAPQE54neuTVdmFjUG0Yr5K5WazLmAmwHQVWuPzrPdiiwRN-jzy2wogLW6clBtsT_ovHekR0xNTcgKXVu9_k2deqxDrHaOSAP73Gc5-RO7tN8JwcrJZr8wIM1ZV6WeHsF6SjlvA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inactivation+of+Cell+Division+Protein+FtsZ+by+SulA+Makes+Lon+Indispensable+for+the+Viability+of+a+ppGpp0+Strain+of+Escherichia+coli&rft.jtitle=Journal+of+bacteriology&rft.au=Nazir%2C+Aanisa&rft.au=Harinarayanan%2C+Rajendran&rft.date=2015-12-07&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=198&rft.issue=4&rft.spage=688&rft.epage=700&rft_id=info:doi/10.1128%2FJB.00693-15&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5530&client=summon