An Hermite–Obreshkov method for 2nd-order linear initial-value problems for ODE
The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if o...
Saved in:
Published in | Numerical algorithms Vol. 96; no. 3; pp. 1109 - 1141 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if only a single scalar equation such as the Mathieu equation y′′+(a-2qcos2x)y=0 is being considered. Nonetheless, the topic is not yet exhausted, and this paper considers the case of writing an efficient arbitrary-precision code for the solution of such equations. For this purpose, an implicit Hermite–Obreshkov method attains nearly spectral accuracy at a cost only polynomial in the number of bits of accuracy requested. This is interesting for the Mathieu equation in particular because the solutions can be highly oscillatory of variable frequency and be highly ill-conditioned. This paper reports on the details of the prototype Maple implementation of the method and summarizes the approximation theoretic results justifying the choice of a balanced Hermite–Obreshkov method including its backward stability and decent Lebesgue constants. This method may be of especial interest for the solution of so-called D-finite equations, for which Taylor series coefficients up to degree m are available at cost only O(m), instead of the more usual O(m2). This paper celebrates the happy occasion of the 90th birthday of John C. Butcher. |
---|---|
AbstractList | The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if only a single scalar equation such as the Mathieu equation y′′+(a-2qcos2x)y=0 is being considered. Nonetheless, the topic is not yet exhausted, and this paper considers the case of writing an efficient arbitrary-precision code for the solution of such equations. For this purpose, an implicit Hermite–Obreshkov method attains nearly spectral accuracy at a cost only polynomial in the number of bits of accuracy requested. This is interesting for the Mathieu equation in particular because the solutions can be highly oscillatory of variable frequency and be highly ill-conditioned. This paper reports on the details of the prototype Maple implementation of the method and summarizes the approximation theoretic results justifying the choice of a balanced Hermite–Obreshkov method including its backward stability and decent Lebesgue constants. This method may be of especial interest for the solution of so-called D-finite equations, for which Taylor series coefficients up to degree m are available at cost only O(m), instead of the more usual O(m2). This paper celebrates the happy occasion of the 90th birthday of John C. Butcher. |
Author | Corless, Robert M |
Author_xml | – sequence: 1 givenname: Robert M surname: Corless fullname: Corless, Robert M |
BookMark | eNqFUMFKAzEUDFLBtvoDngKeoy_JJi85llpboVAEPZfdJqFbt0nNbnvw5D_4h36Ji3r3NMMwM-8xIzKIKXpCrjnccgC8azkHVAyEZMBRGvZ-RoZcoWBWaDXoeS8zLq25IKO23QH0MYFD8jSJdOHzvu7818fnqsq-3b6mE937bpscDSlTER1L2flMmzr6MtM61l1dNuxUNkdPDzlVjd-3P97V_eySnIeyaf3VH47Jy8Psebpgy9X8cTpZsgMveMc8aPQSja2CAestIgYjNq7UOqDjwaLDjQAHQQvLZTCVVBIKK1xRWlNoOSY3v739A29H33brXTrm2J9cS9BKSqWB_-fqZ1GI8htPPl86 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11075-023-01738-z |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9265 |
EndPage | 1141 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JQ2 JZLTJ K7- KDC KOV L6V LAK LLZTM M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~EX |
ID | FETCH-LOGICAL-p141t-e067e3789bf809e9777f82cda66f7d1f97d7c20d0f62913f8b3530492d4a98463 |
IEDL.DBID | BENPR |
ISSN | 1017-1398 |
IngestDate | Fri Jul 25 11:08:15 EDT 2025 Fri Jul 25 09:09:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p141t-e067e3789bf809e9777f82cda66f7d1f97d7c20d0f62913f8b3530492d4a98463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3065101577 |
PQPubID | 2043837 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3065335601 proquest_journals_3065101577 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Numerical algorithms |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
SSID | ssj0010027 |
Score | 2.367502 |
Snippet | The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 1109 |
SubjectTerms | Algorithms Differential equations Linear equations Mathematicians Methods Ordinary differential equations Polynomials Taylor series |
Title | An Hermite–Obreshkov method for 2nd-order linear initial-value problems for ODE |
URI | https://www.proquest.com/docview/3065101577 https://www.proquest.com/docview/3065335601 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFL2i7QIDjwLiUSoPrBZJnMT2hFpoqZDaAqJSt8qpbYFAaWkCAxP_wB_yJdiJWwYEs-Ml1z73XN_HAThlfqy1l8RY-Z7GIScJFnoqMPGkL7SUTCnbO9wfxL1ReD2Oxu7BLXNllUtMLIBazqb2jfzMKpyb4xNRej5_wVY1ymZXnYRGBWoGghmrQq3dGdzcrfIINuoq8p0Giw3XYa5tpmyeM5GP7U629UTUXPv3X3Bc-JjuNmw6cohapTV3YE2lddhyRBG5a5jVYaO_Graa7cJtK0U9W9OSq6-Pz6GJcbOHp9kbKsWhkWGlKEglLoZsIssqxQI92poh8YztrG-FnKpMVnw7vOzswajbub_oYaeUgOd-6OdYGZ-jCGU80czjynA6qlkwlSKONZW-5lTSaeBJT8cB94lmCYlsfi2QoeCGgZB9qKazVB0AkoZw6SAmKhYs1DTkIU24FmHEi8E99BAay580ccc9m_wY589lQmzsd_T_7mNYDwxpKMthG1DNF6_qxDj9PGlChXWvmlBrddvtQdPZ-Rv8hK3A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO2Ip4AMcLRLbjeMDQhVQylIQEkjcilPbAoHSQgoITvwD_8FH8SWMkxQOCG6ck_hgj9-8ySwPYC0OI-eCJKI2DBwViidUu7amPDChdsbE1vre4eZx1DgXBxfViwF47_fC-LLKPibmQG06bf-PfMMrnKP5VKXc6t5Rrxrls6t9CY3CLA7t8xOGbNnm_g6e7zpj9d2z7QYtVQVoNxRhj1rEZ8tlrBIXB8oi_5EuZm2jo8hJEzoljWyzwAQuYirkLk541eeimBFaobfmuO4gDAuOntx3ptf3vrIWPsbLs6uI_Mis4rJJp2jVwzjL90L76iWJIPPyA_xzj1afhPGSipJaYTtTMGDTaZgoaSkpL302DWPNr9Gu2Qyc1lLS8BU0Pfvx-naCEXV2ddN5JIUUNUEOTFhqaD7Sk3gOq-_Jta9Q0rfUTxa3pNSwyfJ3T3Z2Z-H8X3ZwDobSTmrngRikd45F3EY6Fk4KJWSinBZVlY8JkgtQ6W9Sq7xcWevbFH59zLmPNBf__noVRhpnzaPW0f7x4RKMMqQrRSFuBYZ69w92GelGL1nJz5jA5X8b1ScoouWW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Hermite%E2%80%93Obreshkov+method+for+2nd-order+linear+initial-value+problems+for+ODE&rft.jtitle=Numerical+algorithms&rft.au=Corless%2C+Robert+M&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=96&rft.issue=3&rft.spage=1109&rft.epage=1141&rft_id=info:doi/10.1007%2Fs11075-023-01738-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |