An Hermite–Obreshkov method for 2nd-order linear initial-value problems for ODE

The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if o...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 96; no. 3; pp. 1109 - 1141
Main Author Corless, Robert M
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if only a single scalar equation such as the Mathieu equation y′′+(a-2qcos2x)y=0 is being considered. Nonetheless, the topic is not yet exhausted, and this paper considers the case of writing an efficient arbitrary-precision code for the solution of such equations. For this purpose, an implicit Hermite–Obreshkov method attains nearly spectral accuracy at a cost only polynomial in the number of bits of accuracy requested. This is interesting for the Mathieu equation in particular because the solutions can be highly oscillatory of variable frequency and be highly ill-conditioned. This paper reports on the details of the prototype Maple implementation of the method and summarizes the approximation theoretic results justifying the choice of a balanced Hermite–Obreshkov method including its backward stability and decent Lebesgue constants. This method may be of especial interest for the solution of so-called D-finite equations, for which Taylor series coefficients up to degree m are available at cost only O(m), instead of the more usual O(m2). This paper celebrates the happy occasion of the 90th birthday of John C. Butcher.
AbstractList The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes freely available. Second-order linear equations without singularities are an especially simple class of problems to solve, even more so if only a single scalar equation such as the Mathieu equation y′′+(a-2qcos2x)y=0 is being considered. Nonetheless, the topic is not yet exhausted, and this paper considers the case of writing an efficient arbitrary-precision code for the solution of such equations. For this purpose, an implicit Hermite–Obreshkov method attains nearly spectral accuracy at a cost only polynomial in the number of bits of accuracy requested. This is interesting for the Mathieu equation in particular because the solutions can be highly oscillatory of variable frequency and be highly ill-conditioned. This paper reports on the details of the prototype Maple implementation of the method and summarizes the approximation theoretic results justifying the choice of a balanced Hermite–Obreshkov method including its backward stability and decent Lebesgue constants. This method may be of especial interest for the solution of so-called D-finite equations, for which Taylor series coefficients up to degree m are available at cost only O(m), instead of the more usual O(m2). This paper celebrates the happy occasion of the 90th birthday of John C. Butcher.
Author Corless, Robert M
Author_xml – sequence: 1
  givenname: Robert M
  surname: Corless
  fullname: Corless, Robert M
BookMark eNqFUMFKAzEUDFLBtvoDngKeoy_JJi85llpboVAEPZfdJqFbt0nNbnvw5D_4h36Ji3r3NMMwM-8xIzKIKXpCrjnccgC8azkHVAyEZMBRGvZ-RoZcoWBWaDXoeS8zLq25IKO23QH0MYFD8jSJdOHzvu7818fnqsq-3b6mE937bpscDSlTER1L2flMmzr6MtM61l1dNuxUNkdPDzlVjd-3P97V_eySnIeyaf3VH47Jy8Psebpgy9X8cTpZsgMveMc8aPQSja2CAestIgYjNq7UOqDjwaLDjQAHQQvLZTCVVBIKK1xRWlNoOSY3v739A29H33brXTrm2J9cS9BKSqWB_-fqZ1GI8htPPl86
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID 8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-023-01738-z
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9265
EndPage 1141
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
JZLTJ
K7-
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
ID FETCH-LOGICAL-p141t-e067e3789bf809e9777f82cda66f7d1f97d7c20d0f62913f8b3530492d4a98463
IEDL.DBID BENPR
ISSN 1017-1398
IngestDate Fri Jul 25 11:08:15 EDT 2025
Fri Jul 25 09:09:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p141t-e067e3789bf809e9777f82cda66f7d1f97d7c20d0f62913f8b3530492d4a98463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3065101577
PQPubID 2043837
PageCount 33
ParticipantIDs proquest_journals_3065335601
proquest_journals_3065101577
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0010027
Score 2.367502
Snippet The numerical solution of initial-value problems (IVP) for ordinary differential equations (ODE) is at this time a mature subject, with many high-quality codes...
SourceID proquest
SourceType Aggregation Database
StartPage 1109
SubjectTerms Algorithms
Differential equations
Linear equations
Mathematicians
Methods
Ordinary differential equations
Polynomials
Taylor series
Title An Hermite–Obreshkov method for 2nd-order linear initial-value problems for ODE
URI https://www.proquest.com/docview/3065101577
https://www.proquest.com/docview/3065335601
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFL2i7QIDjwLiUSoPrBZJnMT2hFpoqZDaAqJSt8qpbYFAaWkCAxP_wB_yJdiJWwYEs-Ml1z73XN_HAThlfqy1l8RY-Z7GIScJFnoqMPGkL7SUTCnbO9wfxL1ReD2Oxu7BLXNllUtMLIBazqb2jfzMKpyb4xNRej5_wVY1ymZXnYRGBWoGghmrQq3dGdzcrfIINuoq8p0Giw3XYa5tpmyeM5GP7U629UTUXPv3X3Bc-JjuNmw6cohapTV3YE2lddhyRBG5a5jVYaO_Graa7cJtK0U9W9OSq6-Pz6GJcbOHp9kbKsWhkWGlKEglLoZsIssqxQI92poh8YztrG-FnKpMVnw7vOzswajbub_oYaeUgOd-6OdYGZ-jCGU80czjynA6qlkwlSKONZW-5lTSaeBJT8cB94lmCYlsfi2QoeCGgZB9qKazVB0AkoZw6SAmKhYs1DTkIU24FmHEi8E99BAay580ccc9m_wY589lQmzsd_T_7mNYDwxpKMthG1DNF6_qxDj9PGlChXWvmlBrddvtQdPZ-Rv8hK3A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO2Ip4AMcLRLbjeMDQhVQylIQEkjcilPbAoHSQgoITvwD_8FH8SWMkxQOCG6ck_hgj9-8ySwPYC0OI-eCJKI2DBwViidUu7amPDChdsbE1vre4eZx1DgXBxfViwF47_fC-LLKPibmQG06bf-PfMMrnKP5VKXc6t5Rrxrls6t9CY3CLA7t8xOGbNnm_g6e7zpj9d2z7QYtVQVoNxRhj1rEZ8tlrBIXB8oi_5EuZm2jo8hJEzoljWyzwAQuYirkLk541eeimBFaobfmuO4gDAuOntx3ptf3vrIWPsbLs6uI_Mis4rJJp2jVwzjL90L76iWJIPPyA_xzj1afhPGSipJaYTtTMGDTaZgoaSkpL302DWPNr9Gu2Qyc1lLS8BU0Pfvx-naCEXV2ddN5JIUUNUEOTFhqaD7Sk3gOq-_Jta9Q0rfUTxa3pNSwyfJ3T3Z2Z-H8X3ZwDobSTmrngRikd45F3EY6Fk4KJWSinBZVlY8JkgtQ6W9Sq7xcWevbFH59zLmPNBf__noVRhpnzaPW0f7x4RKMMqQrRSFuBYZ69w92GelGL1nJz5jA5X8b1ScoouWW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Hermite%E2%80%93Obreshkov+method+for+2nd-order+linear+initial-value+problems+for+ODE&rft.jtitle=Numerical+algorithms&rft.au=Corless%2C+Robert+M&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=96&rft.issue=3&rft.spage=1109&rft.epage=1141&rft_id=info:doi/10.1007%2Fs11075-023-01738-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon