Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy

Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermed...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 8; p. 2798
Main Authors Zhang, Shuai, Andreasen, Maria, Nielsen, Jakob T, Liu, Lei, Nielsen, Erik H, Song, Jie, Ji, Gang, Sun, Fei, Skrydstrup, Troels, Besenbacher, Flemming, Nielsen, Niels C, Otzen, Daniel E, Dong, Mingdong
Format Journal Article
LanguageEnglish
Published United States 19.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.
AbstractList Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.
Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.
Author Nielsen, Erik H
Sun, Fei
Song, Jie
Zhang, Shuai
Dong, Mingdong
Nielsen, Jakob T
Nielsen, Niels C
Liu, Lei
Skrydstrup, Troels
Otzen, Daniel E
Besenbacher, Flemming
Ji, Gang
Andreasen, Maria
Author_xml – sequence: 1
  givenname: Shuai
  surname: Zhang
  fullname: Zhang, Shuai
  organization: Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
– sequence: 2
  givenname: Maria
  surname: Andreasen
  fullname: Andreasen, Maria
– sequence: 3
  givenname: Jakob T
  surname: Nielsen
  fullname: Nielsen, Jakob T
– sequence: 4
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
– sequence: 5
  givenname: Erik H
  surname: Nielsen
  fullname: Nielsen, Erik H
– sequence: 6
  givenname: Jie
  surname: Song
  fullname: Song, Jie
– sequence: 7
  givenname: Gang
  surname: Ji
  fullname: Ji, Gang
– sequence: 8
  givenname: Fei
  surname: Sun
  fullname: Sun, Fei
– sequence: 9
  givenname: Troels
  surname: Skrydstrup
  fullname: Skrydstrup, Troels
– sequence: 10
  givenname: Flemming
  surname: Besenbacher
  fullname: Besenbacher, Flemming
– sequence: 11
  givenname: Niels C
  surname: Nielsen
  fullname: Nielsen, Niels C
– sequence: 12
  givenname: Daniel E
  surname: Otzen
  fullname: Otzen, Daniel E
– sequence: 13
  givenname: Mingdong
  surname: Dong
  fullname: Dong, Mingdong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23388629$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AcxBep2Ieevcke6yF1H9kkeyzFR6FgD72HzeafdiXZTXcTsZ_Ar23UCsLAzOHHDMwUjayzgNAtJQtKUv7QWhUWlBEphaCUXKAJJZJGSSzJ6F8eo2kIb4QQKTJyhcaM8yxLmJygz5WDDxM6sBqwq7A3ReEsVrbEB6iNVjWuTOFNHbDzZm-s6ozd48q7Bh_Wy-12zkjE5D328A6qhhIXJ3zsle1MN6DvgK2yrgF9UPanTXWuMRpXzg-DQ_IuaNeertFlpeoAN2efod3T4271Em1en9er5SZqaUy7SDKdCZqkCVAOWcmkEhWJi4SnRHBSirSUumIsA6HEIEkI41pkGkqtoWJ8hua_ta13xx5ClzcmaKhrZcH1IaecMpqymH-jd2e0Lxoo89abRvlT_vcd_wIJ7XQ8
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1209955110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 23388629
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-p141t-92c851676e13e8d29a5f04b6370530d57d9cf228e5a55a590023c58cedccef23
ISSN 1091-6490
IngestDate Fri Jul 11 08:14:51 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p141t-92c851676e13e8d29a5f04b6370530d57d9cf228e5a55a590023c58cedccef23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23388629
PQID 1312172432
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1312172432
pubmed_primary_23388629
PublicationCentury 2000
PublicationDate 2013-Feb-19
20130219
PublicationDateYYYYMMDD 2013-02-19
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-Feb-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
References 16020533 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10427-32
12704221 - Annu Rev Neurosci. 2003;26:267-98
19015532 - Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54
21559483 - PLoS One. 2011;6(4):e18887
10507046 - Methods Enzymol. 1999;309:526-36
4728692 - J Mol Biol. 1973 Apr 5;75(2):295-302
20201512 - J Am Chem Soc. 2010 Mar 31;132(12):4052-3
18654349 - Nat Nanotechnol. 2007 Aug;2(8):507-14
9813280 - Biochim Biophys Acta. 1998 Sep 16;1425(1):127-36
9427660 - Chem Biol. 1997 Dec;4(12):951-9
3035556 - Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881-5
18096801 - Science. 2007 Dec 21;318(5858):1900-3
17038504 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11
17935097 - Angew Chem Int Ed Engl. 2007;46(43):8128-47
19662014 - Nat Nanotechnol. 2009 Aug;4(8):514-7
5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7
21427718 - Nat Commun. 2011;2:247
21466236 - Biomacromolecules. 2011 May 9;12(5):1868-75
21727528 - Nanotechnology. 2006 Aug 28;17(16):4003-9
18339938 - Science. 2008 Mar 14;319(5869):1523-6
20660780 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14128-33
22003494 - Chem Commun (Camb). 2012 Jan 7;48(2):191-3
16756495 - Annu Rev Biochem. 2006;75:333-66
20383125 - Nat Nanotechnol. 2010 Jun;5(6):423-8
22064122 - Biochim Biophys Acta. 2012 Feb;1824(2):274-85
11592996 - Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11857-62
14685248 - Nature. 2003 Dec 18;426(6968):884-90
3317417 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628-32
21870807 - J Am Chem Soc. 2011 Oct 5;133(39):15598-604
2195544 - Proc Natl Acad Sci U S A. 1990 Jul;87(13):5036-40
22006839 - Angew Chem Int Ed Engl. 2011 Dec 9;50(50):12103-8
12481027 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16742-7
20376124 - Nature. 2010 Apr 8;464(7290):828-9
10656810 - J Mol Biol. 2000 Jan 28;295(4):1055-71
21300904 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3246-51
19130518 - Angew Chem Int Ed Engl. 2009;48(12):2118-21
21538748 - Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5495-8
8692984 - Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7283-8
15283924 - Methods. 2004 Sep;34(1):151-60
21219138 - Annu Rev Phys Chem. 2011;62:279-99
19264960 - Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4653-8
9878384 - J Mol Biol. 1999 Jan 8;285(1):33-9
10557293 - Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13175-9
18937465 - J Am Chem Soc. 2008 Nov 12;130(45):14990-5001
16467158 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2046-51
21882806 - J Am Chem Soc. 2011 Oct 12;133(40):16013-22
20552966 - J Am Chem Soc. 2010 Jul 7;132(26):8819-21
References_xml – reference: 10507046 - Methods Enzymol. 1999;309:526-36
– reference: 9813280 - Biochim Biophys Acta. 1998 Sep 16;1425(1):127-36
– reference: 21300904 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3246-51
– reference: 21882806 - J Am Chem Soc. 2011 Oct 12;133(40):16013-22
– reference: 18937465 - J Am Chem Soc. 2008 Nov 12;130(45):14990-5001
– reference: 18096801 - Science. 2007 Dec 21;318(5858):1900-3
– reference: 11592996 - Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11857-62
– reference: 16020533 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10427-32
– reference: 4728692 - J Mol Biol. 1973 Apr 5;75(2):295-302
– reference: 2195544 - Proc Natl Acad Sci U S A. 1990 Jul;87(13):5036-40
– reference: 20552966 - J Am Chem Soc. 2010 Jul 7;132(26):8819-21
– reference: 12704221 - Annu Rev Neurosci. 2003;26:267-98
– reference: 16467158 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2046-51
– reference: 10656810 - J Mol Biol. 2000 Jan 28;295(4):1055-71
– reference: 21870807 - J Am Chem Soc. 2011 Oct 5;133(39):15598-604
– reference: 3317417 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628-32
– reference: 8692984 - Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7283-8
– reference: 21466236 - Biomacromolecules. 2011 May 9;12(5):1868-75
– reference: 22064122 - Biochim Biophys Acta. 2012 Feb;1824(2):274-85
– reference: 19662014 - Nat Nanotechnol. 2009 Aug;4(8):514-7
– reference: 19264960 - Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4653-8
– reference: 21427718 - Nat Commun. 2011;2:247
– reference: 9427660 - Chem Biol. 1997 Dec;4(12):951-9
– reference: 16756495 - Annu Rev Biochem. 2006;75:333-66
– reference: 20376124 - Nature. 2010 Apr 8;464(7290):828-9
– reference: 19130518 - Angew Chem Int Ed Engl. 2009;48(12):2118-21
– reference: 20660780 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14128-33
– reference: 22003494 - Chem Commun (Camb). 2012 Jan 7;48(2):191-3
– reference: 20383125 - Nat Nanotechnol. 2010 Jun;5(6):423-8
– reference: 18654349 - Nat Nanotechnol. 2007 Aug;2(8):507-14
– reference: 17038504 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11
– reference: 20201512 - J Am Chem Soc. 2010 Mar 31;132(12):4052-3
– reference: 21559483 - PLoS One. 2011;6(4):e18887
– reference: 21727528 - Nanotechnology. 2006 Aug 28;17(16):4003-9
– reference: 17935097 - Angew Chem Int Ed Engl. 2007;46(43):8128-47
– reference: 21538748 - Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5495-8
– reference: 22006839 - Angew Chem Int Ed Engl. 2011 Dec 9;50(50):12103-8
– reference: 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7
– reference: 21219138 - Annu Rev Phys Chem. 2011;62:279-99
– reference: 10557293 - Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13175-9
– reference: 14685248 - Nature. 2003 Dec 18;426(6968):884-90
– reference: 18339938 - Science. 2008 Mar 14;319(5869):1523-6
– reference: 12481027 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16742-7
– reference: 3035556 - Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881-5
– reference: 9878384 - J Mol Biol. 1999 Jan 8;285(1):33-9
– reference: 15283924 - Methods. 2004 Sep;34(1):151-60
– reference: 19015532 - Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54
SSID ssj0009580
Score 2.4207287
Snippet Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2798
SubjectTerms Amyloid - chemistry
Amyloid - genetics
Humans
Islet Amyloid Polypeptide
Microscopy, Atomic Force - methods
Models, Molecular
Mutation
Nanotechnology
Nuclear Magnetic Resonance, Biomolecular
Peptide Fragments - chemistry
Peptide Fragments - genetics
Protein Conformation
Title Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/23388629
https://www.proquest.com/docview/1312172432
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKJ-lgBaJQ6vKxV5_H6MKFBCNcghSb9HueqxEJXZo7EP5A_wa_iMzu-vYBSoBUmRFtmxLnqfZmdn3Zhh7U9B2S6RTL0kg86I4VZ6MdOkhPCAoCqWl6c5_Pk0mn6OPF_HFaPRjwFpqG3Wqv_1RV_I_VsVzaFdSyf6DZXcPxRP4H-2LR7QwHv_Kxmc1NbI0US8FfVcrpRy5eAlfrDaRGP3UINnOvzIcZ6MoWX4Yz2YYXWJaJ3IqDVArJ1wsTDz6tZWVEZ8RraiSVb0GEgjbxgIN6ZiJnYgvXROdj4QtNzaHZ7tFcdtREKZdzXHcK1icW9meeCezaT8PuS9hL1u56ssUBdHnrZM8l5Yc7XZUaHm3EhN5Waue9v1p1ZqyA6yGtQ2aMyE850HB-mMMZ7wkshNFdw7bEWEtMrOh-03tSOvf1gV0ZDTMuJLbUyMWxjjRPmSAks3awERg0o5pXt4vkDvaYnfpDrsrMCsxPNLJsMdz5nfdo9Lw7S9vo7bT7v7bsxkT1cwfsPsuHeFji619NoLqIdvvLMOPXFfy40fs-wBsvC65BRtHsHEHNu7Axgdg4wQ2bsB2ZKB2zDugcXXNh0DjN4HGLdC4ARrvgfaYzd-_m59NPDfFw9sEUdB4udAY1SdpAkEIWSFyGZd-pJIwRf_vF3Fa5LoUIoNYxvjLKYrUcaah0BpKET5he1VdwTPGRZFEqvR9CRIidCuZyrRf5KAkZJBCcsBed591gU6Sdr5kBXW7XQRhQIPYolAcsKf2ey82tpvLojPK81uvHLJ7PThfsL3mqoWXGIo26pUBwE_a4o1N
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+ribbon+and+helical+fibrils+originating+from+hIAPP%2820-29%29+revealed+by+quantitative+nanomechanical+atomic+force+microscopy&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Shuai&rft.au=Andreasen%2C+Maria&rft.au=Nielsen%2C+Jakob+T&rft.au=Liu%2C+Lei&rft.date=2013-02-19&rft.eissn=1091-6490&rft.volume=110&rft.issue=8&rft.spage=2798&rft_id=info:doi/10.1073%2Fpnas.1209955110&rft_id=info%3Apmid%2F23388629&rft.externalDocID=23388629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon