Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy
Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermed...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 8; p. 2798 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
19.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids. |
---|---|
AbstractList | Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids. Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids. |
Author | Nielsen, Erik H Sun, Fei Song, Jie Zhang, Shuai Dong, Mingdong Nielsen, Jakob T Nielsen, Niels C Liu, Lei Skrydstrup, Troels Otzen, Daniel E Besenbacher, Flemming Ji, Gang Andreasen, Maria |
Author_xml | – sequence: 1 givenname: Shuai surname: Zhang fullname: Zhang, Shuai organization: Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark – sequence: 2 givenname: Maria surname: Andreasen fullname: Andreasen, Maria – sequence: 3 givenname: Jakob T surname: Nielsen fullname: Nielsen, Jakob T – sequence: 4 givenname: Lei surname: Liu fullname: Liu, Lei – sequence: 5 givenname: Erik H surname: Nielsen fullname: Nielsen, Erik H – sequence: 6 givenname: Jie surname: Song fullname: Song, Jie – sequence: 7 givenname: Gang surname: Ji fullname: Ji, Gang – sequence: 8 givenname: Fei surname: Sun fullname: Sun, Fei – sequence: 9 givenname: Troels surname: Skrydstrup fullname: Skrydstrup, Troels – sequence: 10 givenname: Flemming surname: Besenbacher fullname: Besenbacher, Flemming – sequence: 11 givenname: Niels C surname: Nielsen fullname: Nielsen, Niels C – sequence: 12 givenname: Daniel E surname: Otzen fullname: Otzen, Daniel E – sequence: 13 givenname: Mingdong surname: Dong fullname: Dong, Mingdong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23388629$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEtLw0AcxBep2Ieevcke6yF1H9kkeyzFR6FgD72HzeafdiXZTXcTsZ_Ar23UCsLAzOHHDMwUjayzgNAtJQtKUv7QWhUWlBEphaCUXKAJJZJGSSzJ6F8eo2kIb4QQKTJyhcaM8yxLmJygz5WDDxM6sBqwq7A3ReEsVrbEB6iNVjWuTOFNHbDzZm-s6ozd48q7Bh_Wy-12zkjE5D328A6qhhIXJ3zsle1MN6DvgK2yrgF9UPanTXWuMRpXzg-DQ_IuaNeertFlpeoAN2efod3T4271Em1en9er5SZqaUy7SDKdCZqkCVAOWcmkEhWJi4SnRHBSirSUumIsA6HEIEkI41pkGkqtoWJ8hua_ta13xx5ClzcmaKhrZcH1IaecMpqymH-jd2e0Lxoo89abRvlT_vcd_wIJ7XQ8 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1073/pnas.1209955110 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 23388629 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
ID | FETCH-LOGICAL-p141t-92c851676e13e8d29a5f04b6370530d57d9cf228e5a55a590023c58cedccef23 |
ISSN | 1091-6490 |
IngestDate | Fri Jul 11 08:14:51 EDT 2025 Thu Apr 03 07:00:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p141t-92c851676e13e8d29a5f04b6370530d57d9cf228e5a55a590023c58cedccef23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23388629 |
PQID | 1312172432 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1312172432 pubmed_primary_23388629 |
PublicationCentury | 2000 |
PublicationDate | 2013-Feb-19 20130219 |
PublicationDateYYYYMMDD | 2013-02-19 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-Feb-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
References | 16020533 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10427-32 12704221 - Annu Rev Neurosci. 2003;26:267-98 19015532 - Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54 21559483 - PLoS One. 2011;6(4):e18887 10507046 - Methods Enzymol. 1999;309:526-36 4728692 - J Mol Biol. 1973 Apr 5;75(2):295-302 20201512 - J Am Chem Soc. 2010 Mar 31;132(12):4052-3 18654349 - Nat Nanotechnol. 2007 Aug;2(8):507-14 9813280 - Biochim Biophys Acta. 1998 Sep 16;1425(1):127-36 9427660 - Chem Biol. 1997 Dec;4(12):951-9 3035556 - Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881-5 18096801 - Science. 2007 Dec 21;318(5858):1900-3 17038504 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11 17935097 - Angew Chem Int Ed Engl. 2007;46(43):8128-47 19662014 - Nat Nanotechnol. 2009 Aug;4(8):514-7 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7 21427718 - Nat Commun. 2011;2:247 21466236 - Biomacromolecules. 2011 May 9;12(5):1868-75 21727528 - Nanotechnology. 2006 Aug 28;17(16):4003-9 18339938 - Science. 2008 Mar 14;319(5869):1523-6 20660780 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14128-33 22003494 - Chem Commun (Camb). 2012 Jan 7;48(2):191-3 16756495 - Annu Rev Biochem. 2006;75:333-66 20383125 - Nat Nanotechnol. 2010 Jun;5(6):423-8 22064122 - Biochim Biophys Acta. 2012 Feb;1824(2):274-85 11592996 - Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11857-62 14685248 - Nature. 2003 Dec 18;426(6968):884-90 3317417 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628-32 21870807 - J Am Chem Soc. 2011 Oct 5;133(39):15598-604 2195544 - Proc Natl Acad Sci U S A. 1990 Jul;87(13):5036-40 22006839 - Angew Chem Int Ed Engl. 2011 Dec 9;50(50):12103-8 12481027 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16742-7 20376124 - Nature. 2010 Apr 8;464(7290):828-9 10656810 - J Mol Biol. 2000 Jan 28;295(4):1055-71 21300904 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3246-51 19130518 - Angew Chem Int Ed Engl. 2009;48(12):2118-21 21538748 - Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5495-8 8692984 - Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7283-8 15283924 - Methods. 2004 Sep;34(1):151-60 21219138 - Annu Rev Phys Chem. 2011;62:279-99 19264960 - Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4653-8 9878384 - J Mol Biol. 1999 Jan 8;285(1):33-9 10557293 - Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13175-9 18937465 - J Am Chem Soc. 2008 Nov 12;130(45):14990-5001 16467158 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2046-51 21882806 - J Am Chem Soc. 2011 Oct 12;133(40):16013-22 20552966 - J Am Chem Soc. 2010 Jul 7;132(26):8819-21 |
References_xml | – reference: 10507046 - Methods Enzymol. 1999;309:526-36 – reference: 9813280 - Biochim Biophys Acta. 1998 Sep 16;1425(1):127-36 – reference: 21300904 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3246-51 – reference: 21882806 - J Am Chem Soc. 2011 Oct 12;133(40):16013-22 – reference: 18937465 - J Am Chem Soc. 2008 Nov 12;130(45):14990-5001 – reference: 18096801 - Science. 2007 Dec 21;318(5858):1900-3 – reference: 11592996 - Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11857-62 – reference: 16020533 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10427-32 – reference: 4728692 - J Mol Biol. 1973 Apr 5;75(2):295-302 – reference: 2195544 - Proc Natl Acad Sci U S A. 1990 Jul;87(13):5036-40 – reference: 20552966 - J Am Chem Soc. 2010 Jul 7;132(26):8819-21 – reference: 12704221 - Annu Rev Neurosci. 2003;26:267-98 – reference: 16467158 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2046-51 – reference: 10656810 - J Mol Biol. 2000 Jan 28;295(4):1055-71 – reference: 21870807 - J Am Chem Soc. 2011 Oct 5;133(39):15598-604 – reference: 3317417 - Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628-32 – reference: 8692984 - Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7283-8 – reference: 21466236 - Biomacromolecules. 2011 May 9;12(5):1868-75 – reference: 22064122 - Biochim Biophys Acta. 2012 Feb;1824(2):274-85 – reference: 19662014 - Nat Nanotechnol. 2009 Aug;4(8):514-7 – reference: 19264960 - Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4653-8 – reference: 21427718 - Nat Commun. 2011;2:247 – reference: 9427660 - Chem Biol. 1997 Dec;4(12):951-9 – reference: 16756495 - Annu Rev Biochem. 2006;75:333-66 – reference: 20376124 - Nature. 2010 Apr 8;464(7290):828-9 – reference: 19130518 - Angew Chem Int Ed Engl. 2009;48(12):2118-21 – reference: 20660780 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14128-33 – reference: 22003494 - Chem Commun (Camb). 2012 Jan 7;48(2):191-3 – reference: 20383125 - Nat Nanotechnol. 2010 Jun;5(6):423-8 – reference: 18654349 - Nat Nanotechnol. 2007 Aug;2(8):507-14 – reference: 17038504 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11 – reference: 20201512 - J Am Chem Soc. 2010 Mar 31;132(12):4052-3 – reference: 21559483 - PLoS One. 2011;6(4):e18887 – reference: 21727528 - Nanotechnology. 2006 Aug 28;17(16):4003-9 – reference: 17935097 - Angew Chem Int Ed Engl. 2007;46(43):8128-47 – reference: 21538748 - Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5495-8 – reference: 22006839 - Angew Chem Int Ed Engl. 2011 Dec 9;50(50):12103-8 – reference: 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7 – reference: 21219138 - Annu Rev Phys Chem. 2011;62:279-99 – reference: 10557293 - Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13175-9 – reference: 14685248 - Nature. 2003 Dec 18;426(6968):884-90 – reference: 18339938 - Science. 2008 Mar 14;319(5869):1523-6 – reference: 12481027 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16742-7 – reference: 3035556 - Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881-5 – reference: 9878384 - J Mol Biol. 1999 Jan 8;285(1):33-9 – reference: 15283924 - Methods. 2004 Sep;34(1):151-60 – reference: 19015532 - Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54 |
SSID | ssj0009580 |
Score | 2.4207287 |
Snippet | Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative... |
SourceID | proquest pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 2798 |
SubjectTerms | Amyloid - chemistry Amyloid - genetics Humans Islet Amyloid Polypeptide Microscopy, Atomic Force - methods Models, Molecular Mutation Nanotechnology Nuclear Magnetic Resonance, Biomolecular Peptide Fragments - chemistry Peptide Fragments - genetics Protein Conformation |
Title | Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23388629 https://www.proquest.com/docview/1312172432 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKJ-lgBaJQ6vKxV5_H6MKFBCNcghSb9HueqxEJXZo7EP5A_wa_iMzu-vYBSoBUmRFtmxLnqfZmdn3Zhh7U9B2S6RTL0kg86I4VZ6MdOkhPCAoCqWl6c5_Pk0mn6OPF_HFaPRjwFpqG3Wqv_1RV_I_VsVzaFdSyf6DZXcPxRP4H-2LR7QwHv_Kxmc1NbI0US8FfVcrpRy5eAlfrDaRGP3UINnOvzIcZ6MoWX4Yz2YYXWJaJ3IqDVArJ1wsTDz6tZWVEZ8RraiSVb0GEgjbxgIN6ZiJnYgvXROdj4QtNzaHZ7tFcdtREKZdzXHcK1icW9meeCezaT8PuS9hL1u56ssUBdHnrZM8l5Yc7XZUaHm3EhN5Waue9v1p1ZqyA6yGtQ2aMyE850HB-mMMZ7wkshNFdw7bEWEtMrOh-03tSOvf1gV0ZDTMuJLbUyMWxjjRPmSAks3awERg0o5pXt4vkDvaYnfpDrsrMCsxPNLJsMdz5nfdo9Lw7S9vo7bT7v7bsxkT1cwfsPsuHeFji619NoLqIdvvLMOPXFfy40fs-wBsvC65BRtHsHEHNu7Axgdg4wQ2bsB2ZKB2zDugcXXNh0DjN4HGLdC4ARrvgfaYzd-_m59NPDfFw9sEUdB4udAY1SdpAkEIWSFyGZd-pJIwRf_vF3Fa5LoUIoNYxvjLKYrUcaah0BpKET5he1VdwTPGRZFEqvR9CRIidCuZyrRf5KAkZJBCcsBed591gU6Sdr5kBXW7XQRhQIPYolAcsKf2ey82tpvLojPK81uvHLJ7PThfsL3mqoWXGIo26pUBwE_a4o1N |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+ribbon+and+helical+fibrils+originating+from+hIAPP%2820-29%29+revealed+by+quantitative+nanomechanical+atomic+force+microscopy&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Shuai&rft.au=Andreasen%2C+Maria&rft.au=Nielsen%2C+Jakob+T&rft.au=Liu%2C+Lei&rft.date=2013-02-19&rft.eissn=1091-6490&rft.volume=110&rft.issue=8&rft.spage=2798&rft_id=info:doi/10.1073%2Fpnas.1209955110&rft_id=info%3Apmid%2F23388629&rft.externalDocID=23388629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |