A note on the maximum number of triangles in a C5‐free graph

We prove that the maximum number of triangles in a C 5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 90; no. 3; pp. 227 - 230
Main Authors Ergemlidze, Beka, Methuku, Abhishek, Salia, Nika, Győri, Ervin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.22390

Cover

Loading…
Abstract We prove that the maximum number of triangles in a C 5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.
AbstractList We prove that the maximum number of triangles in a C 5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.
We prove that the maximum number of triangles in a C5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.
Author Methuku, Abhishek
Győri, Ervin
Ergemlidze, Beka
Salia, Nika
Author_xml – sequence: 1
  givenname: Beka
  surname: Ergemlidze
  fullname: Ergemlidze, Beka
  organization: Central European University
– sequence: 2
  givenname: Abhishek
  surname: Methuku
  fullname: Methuku, Abhishek
  organization: Central European University
– sequence: 3
  givenname: Nika
  surname: Salia
  fullname: Salia, Nika
  organization: Central European University
– sequence: 4
  givenname: Ervin
  surname: Győri
  fullname: Győri, Ervin
  email: gyori.ervin@renyi.mta.hu
  organization: Central European University
BookMark eNotkEFOwzAQRS1UJNLCghtYYp12bMexs0GqIiigSmzK2rKJkyZKnOAkgu44Qs_ISQgtqz_68zQjvTmaudZZhG4JLAkAXVXFsKSUJXCBAgKJCIEQOUMBsDgKE6DRFZr3fQVTzUEG6H6NXTtY3Do87C1u9FfZjA12Y2Osx22OB19qV9S2x6XDGqf85_uYe2tx4XW3v0aXua57e_OfC_T2-LBLn8Lt6-Y5XW_DjjAJoQXgGeUZj4HyBCQzWvA81oaAibgRIjFEChJxKqKYZQaYYVlirOTv2bTL2ALdne92vv0YbT-oqh29m14qSmJBqWQ8nqjVmfosa3tQnS8b7Q-KgPpzoyY36uRGvWx2p4H9AlIYWLQ
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DOI 10.1002/jgt.22390
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 230
ExternalDocumentID JGT22390
Genre article
GrantInformation_xml – fundername: National Research, Development and Innovation Office NKFIH (Hungary)
  funderid: K116769; SNN 117879
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
ID FETCH-LOGICAL-p1380-e005d25d560259083ba75f6ab10b45b779b18714527463db03b3d9be85cd79bd3
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:06:03 EDT 2025
Wed Jan 22 17:09:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1380-e005d25d560259083ba75f6ab10b45b779b18714527463db03b3d9be85cd79bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2167228356
PQPubID 1006407
PageCount 4
ParticipantIDs proquest_journals_2167228356
wiley_primary_10_1002_jgt_22390_JGT22390
PublicationCentury 2000
PublicationDate March 2019
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
SSID ssj0011508
Score 2.3620565
Snippet We prove that the maximum number of triangles in a C 5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.
We prove that the maximum number of triangles in a C5‐free graph on n vertices is at most 122(1+o(1))n3∕2, improving an estimate of Alon and Shikhelman.
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 227
SubjectTerms Apexes
extremal graphs
Graph theory
graphs
triangles
Title A note on the maximum number of triangles in a C5‐free graph
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22390
https://www.proquest.com/docview/2167228356
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeX0pMefIvVKnvw4CVtks0mWQShVGsp6EFa6EEIu9lNqbVJaVIQT34EP6OfxH008XESbyEPWIaZnf8kk98AcE7ktmgL4lg45ERBtanFqONbhCUhpwmXIkV3-d77_ZE3GONxDVyW_8IYPkT1wk1Fht6vVYBTlre_oKFPk6IlcxtR9bqDfMXNv36o0FFK6ITmO6VnEZmISqqQ7barJ3-oyu_aVCeX3jZ4LJdlekpmrVXBWvHrL2LjP9e9A7bWohN2jJfsgppI98DmXUVszffBVQemWSFglkJ5Fs7py3S-mkMzMARmCVTjPdLJs8jhNIUUdvHH23uyFAJq5PUBGPVuht2-tZ6tYC0cFNqWkNHHXcyl4HHV2HPEaIATnzLHZh5mQUCYI2spD8uq1Uec2YghTpgIcczlNY4OQT3NUnEEYIxczgKKSSy1AhWM2iiWLqBB9qocbIBmaeVoHSB55Dp-oMg72G-AC22uaGHwGpEBKbuRNFSkDRUNbof64Pjvt56ADSltiOkWa4J6sVyJUykfCnam_eQT2Gi-vQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEMcbggf14NuIovbgwcvCvrq7TYwJQREROBhIuJhNu-0SVBYCS2I8-RH8jH4Sp13Ax8l42-wjaSYznf90298gdEZhWjQltQwSCKqg2szgzPIMyuNAsFiASNG7fNteves2eqSXQxeLszAZH2K54KYiQ8_XKsDVgnT5ixr62E9LkNwoFOwrLggNVXpd3S_hUUrqBNmfStegkIoWXCHTLi8__aErv6tTnV5qm-hhMbBsV8lTaZbyUvT6i9n435FvoY257sSVzFG2UU4mO2i9tYS2TnfRZQUno1TiUYLhLh6yl8FwNsRZzxA8irHq8JH0n-UUDxLMcJV8vL3HEymxpl7voW7tulOtG_P2CsbYcgLTkBCAwiYCNI-tOp87nPkk9hi3TO4S7vuUW1BOuQQKV88R3HS4IyiXAYkEPBPOPsono0QeIBw5tuA-IzQCucAkZ6YTgRdolr2qCAuouDBzOI-RaWhbnq_gO8QroHNtr3CcETbCjKVsh2CoUBsqbNx09MXh3189Rav1TqsZNm_bd0doDZQOzTaPFVE-nczkMaiJlJ9op_kE55bC3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeXoiB68C1Wq-7Bg5e0eW2SRRBKtdaqRaSFHoSwm92Uqk1Km4J48iP4Gf0kzm7a-jiJt5AHLMPMzn-SyW8QOqawLZqSWgYJBFVQbWZwZnkG5XEgWCxApOgu35bX6LjNLukW0OnsX5icDzF_4aYiQ-_XKsCHIq58QUMfe1kZchuFen3R9UBJKEV0P2dHKaUT5B8qXYNCJpphhUy7Mn_0h6z8Lk51dqmvoYfZuvKmkqfyJOPl6PUXsvGfC19Hq1PViau5m2yggkw20crtHNk63kJnVZykmcRpguEsHrCX_mAywPnEEJzGWM33SHrPcoz7CWa4Rj7e3uORlFgzr7dRp37RrjWM6XAFY2g5gWlICD9hEwGKx1Zzzx3OfBJ7jFsmdwn3fcotKKZcAmWr5whuOtwRlMuARAKuCWcHLSRpIncRjhxbcJ8RGoFYYJIz04nABzTJXtWDRVSaWTmcRsg4tC3PV-gd4hXRiTZXOMz5GmFOUrZDMFSoDRU2L9v6YO_vtx6hpbvzenhz1breR8sgc2jeOVZCC9loIg9ASmT8ULvMJ9HswYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+maximum+number+of+triangles+in+a+C5%E2%80%90free+graph&rft.jtitle=Journal+of+graph+theory&rft.au=Ergemlidze%2C+Beka&rft.au=Methuku%2C+Abhishek&rft.au=Salia%2C+Nika&rft.au=Gy%C5%91ri%2C+Ervin&rft.date=2019-03-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=90&rft.issue=3&rft.spage=227&rft.epage=230&rft_id=info:doi/10.1002%2Fjgt.22390&rft.externalDBID=10.1002%252Fjgt.22390&rft.externalDocID=JGT22390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon