On reliability estimation p (X1 < Y < X2) following Rayleigh-Pareto distribution in stress-strength model

In this paper, the reliability system R = P(X1 < Y < X2), of the stress-strength model was derived having strength (Y) subject to two stresses X1 and X2 follows the two parameters Rayleigh - Pareto distribution such as δ (scale) known and λ (shape) unknown parameters. We estimate the reliabili...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2394; no. 1
Main Authors Haddad, Emad Sh. M., Batah, Feras Sh. M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 08.11.2022
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/5.0128655

Cover

Abstract In this paper, the reliability system R = P(X1 < Y < X2), of the stress-strength model was derived having strength (Y) subject to two stresses X1 and X2 follows the two parameters Rayleigh - Pareto distribution such as δ (scale) known and λ (shape) unknown parameters. We estimate the reliability function by using three estimation methods as maximum likelihood (ML), Percentile estimation (PE), and two shrinkage methods such that Shrinkage weight Estimator (SMW), and Shrinkage Function Estimator (SMF). To obtain the best estimate of the reliability function by using the Monte Carlo method depend on mean square error (MSE) criteria. The comparison showed that the (SMW) method is the best among the other methods.
AbstractList In this paper, the reliability system R = P(X1 < Y < X2), of the stress-strength model was derived having strength (Y) subject to two stresses X1 and X2 follows the two parameters Rayleigh - Pareto distribution such as δ (scale) known and λ (shape) unknown parameters. We estimate the reliability function by using three estimation methods as maximum likelihood (ML), Percentile estimation (PE), and two shrinkage methods such that Shrinkage weight Estimator (SMW), and Shrinkage Function Estimator (SMF). To obtain the best estimate of the reliability function by using the Monte Carlo method depend on mean square error (MSE) criteria. The comparison showed that the (SMW) method is the best among the other methods.
Author Haddad, Emad Sh. M.
Batah, Feras Sh. M.
Author_xml – sequence: 1
  givenname: Emad Sh. M.
  surname: Haddad
  fullname: Haddad, Emad Sh. M.
  organization: Department Of Mathematics, University Of Anbar, Anbar, Iraq
– sequence: 2
  givenname: Feras Sh. M.
  surname: Batah
  fullname: Batah, Feras Sh. M.
  email: ferashaker2001@uoanbar.edu.iq
  organization: Department Of Mathematics, University Of Anbar, Anbar, Iraq
BookMark eNotUE1LAzEQDVLBtnrwHwS8qLB1stkku-BFil9QqIhCPS3pbrZN2SZrkkX6700_DsNjZt684b0RGhhrFELXBCYEOH1gEyBpzhk7Q0PCGEkEJ3yAhgBFlqQZXVygkfcbgLQQIh8iPTfYqVbLpW512GHlg97KoK3BHb5dEPyIf2It0jvc2La1f9qs8KfctUqv1smHdCpYXGsfnF72hzNtcOyU98kezCqs8dbWqr1E541svbo64Rh9vzx_Td-S2fz1ffo0SzpCaUiaCgRATqlo8qZgICEVRFZFXbCUFzSvm7inUC8zoUiWSSFoJpsaKhUnjFM6RjdH3c7Z3z76KTe2dya-LFNBKecFJyKy7o8sX-lw8Ft2Ljp3u5JAuY-yZOUpSvoPPK9mQQ
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2022 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0128655
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Mohammed, Mohammed Ahmed
Editor_xml – sequence: 1
  givenname: Mohammed Ahmed
  surname: Mohammed
  fullname: Mohammed, Mohammed Ahmed
  organization: University of Al-Qadisiyah
ExternalDocumentID acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p133t-fc07008337f8f950a0271ac9d9526938df07030db47e144a7734afd0ceb475633
ISSN 0094-243X
IngestDate Mon Jun 30 06:44:57 EDT 2025
Fri Jun 21 00:13:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2022/2394/070021/10/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MeetingName 1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021
MergedId FETCHMERGED-LOGICAL-p133t-fc07008337f8f950a0271ac9d9526938df07030db47e144a7734afd0ceb475633
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
PQID 2733669617
PQPubID 2050672
PageCount 10
ParticipantIDs scitation_primary_10_1063_5_0128655
proquest_journals_2733669617
PublicationCentury 2000
PublicationDate 20221108
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: 20221108
  day: 08
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chandra, Owen (c4) 1975
Patowary, Sriwastav, Hazarika (c12) 2016; 12
Birnbaum (c2) 1956; I
Birnbaum, McCarty (c3) 1958
Kao (c10) 1958
Singh (c5) 1980
Jyothi (c7) 2019
Jebeli, Deiri (c13) 2019; 54
Kao (c8) 1958
Al-Joboori (c11) 2014; 38
Kundu, Gupta (c9) 2006
References_xml – start-page: 15
  year: 1958
  ident: c8
  article-title: computer methods for estimating weibull Parameters in Reliability studies
  publication-title: transaction of IRE-Reliability and Quality control
– start-page: 31
  year: 1975
  ident: c4
  article-title: On estimating the reliability of a component subject to several different stresses (strengths)
  publication-title: Naval Research Logistics Quarterly
– volume: 54
  start-page: 1
  year: 2019
  ident: c13
  article-title: Estimation Methods For The Probability Density Function and The Cumulative Distribution Function of The Pareto – Rayleigh Distribution
  publication-title: Statistics: A Journal of Theoretical and Applied Statistics
– volume: I
  start-page: 13
  year: 1956
  ident: c2
  article-title: On a use of the Mann-Whitney statistic
  publication-title: proceedings of the third Berkeley symposium on mathematical statistics and probability
– volume: 12
  start-page: 18
  year: 2016
  ident: c12
  article-title: Inference of R=P(X<Y<Z) For n-Stand by System: A Monte Carlo Simulation Approach
  publication-title: Journal of Mathematics.
– start-page: 2053
  year: 2019
  ident: c7
  article-title: Reliability Computation of System Reliability for the New Rayleigh Pareto Distribution
  publication-title: International Journal of Science and Research (IJSR)
– start-page: 270
  year: 2006
  ident: c9
  article-title: Estimation of P(Y<X) for Weibull distribution
  publication-title: IEEE Transactions on Reliability
– start-page: 15
  year: 1958
  ident: c10
  article-title: Computer Methods for Estimating Weibull Parameters in Reliability Studies
  publication-title: IRE-Reliability and Quality control
– start-page: 1551
  year: 1980
  ident: c5
  article-title: On the estimation of p(X <Y< X )
  publication-title: Communication in Statistics Theory & Methods
– volume: 38
  start-page: 1127
  year: 2014
  ident: c11
  article-title: Single and Double Stage Shrinkage Estimators for the Normal Mean with the Variance Cases
  publication-title: International Journal of statistics
– start-page: 557
  year: 1958
  ident: c3
  article-title: distribution free upper confidence bound for Pr (Y<X), based on independent samples of X and Y
  publication-title: Annals of Mathematical Statistics
SSID ssj0029778
Score 2.309139
Snippet In this paper, the reliability system R = P(X1 < Y < X2), of the stress-strength model was derived having strength (Y) subject to two stresses X1 and X2...
SourceID proquest
scitation
SourceType Aggregation Database
Publisher
SubjectTerms Mathematical models
Maximum likelihood estimation
Monte Carlo simulation
Parameter estimation
Title On reliability estimation p (X1 < Y < X2) following Rayleigh-Pareto distribution in stress-strength model
URI http://dx.doi.org/10.1063/5.0128655
https://www.proquest.com/docview/2733669617
Volume 2394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwRvsA0xGMjSmASKDEnsxInEy4BW21TWSmul8BQ5dkL7QFqtQQj-es7Oh7NumgQPcRIrsiL_zue7830g9MYPqeQyy0iUS0VYERUkLmhAYqqYymIpImm8LS7Dszm7SILEpicw0SVV9l7-uTOu5H9QhT7AVUfJ_gOy3aDQAc-AL7SAMLS3Mb5zqzk9n2rH8TZZrP1m06eFiYlZWdYpuX87OrFGHbHorLWEmXjOCQVObNrE14aCAshj9cu45oFKr82nZKrr4a70iU5XJEsbS-pgE6Jv5fdqUZfW6fM1oZzhD2iuFtby-klUYuGM8muxsf2N7QHUVmNPtdTSHirdcGwwrquyb2oEFZL4zNT9hT2nYbSBR3hYx1m2nFiXad-muVssHmQqwEUnWzVBtXYfa8_uLyfpaD4ep7NhMnuAdn3KI3eAdk-_fB1fdbo4iL31Jt38Wpt0KqQfuqFvKB2PQCKpnSN68sfsCTqwkZl42oH8FO3k5R562MzFPlpOStxDGluk8Rq_TTz8EX-DK_Hf4Q5hvIUw7iOMlyXeQhgbhA_QfDScfT4jTTENsvYorUghgbmDvE05rMc4cIXrc0_IWMW6xjyNVGGYv8oYz0HJFpxTJgrlyhx6gpDSZ2hQrsr8OcIeU_BZFMRMFsyNlMhBy-ZccQ4voF8coqN23tJmtWxSX-fdDGMQmA_RcTeX6brOqZIaX4iQpkHaTP6L-wd5iR5bgjxCg-r6Z_4KxMMqe91A_RcCjmc2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=On+reliability+estimation+p+%28X1+%3C+Y+%3C+X2%29+following+Rayleigh-Pareto+distribution+in+stress-strength+model&rft.au=Haddad+Emad+Sh+M&rft.au=Batah+Feras+Sh+M&rft.date=2022-11-08&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2394&rft.issue=1&rft_id=info:doi/10.1063%2F5.0128655&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon