First-Order Logic: Deductive Systems
We extend the deductive systems$$ G $$and$$ H $$from propositional logic to first-order logic by adding axioms and rules of inference for the universal quantifier. (The existential quantifier is defined as the dual of the universal quantifier.) The construction of semantic tableaux for first-order l...
Saved in:
Published in | Mathematical Logic for Computer Science pp. 155 - 166 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
United Kingdom
Springer London, Limited
2012
Springer London |
Subjects | |
Online Access | Get full text |
ISBN | 1447141288 9781447141280 |
DOI | 10.1007/978-1-4471-4129-7_8 |
Cover
Loading…
Abstract | We extend the deductive systems$$ G $$and$$ H $$from propositional logic to first-order logic by adding axioms and rules of inference for the universal quantifier. (The existential quantifier is defined as the dual of the universal quantifier.) The construction of semantic tableaux for first-order logic included restrictions on the use of constants and similar restrictions will be needed here. |
---|---|
AbstractList | We extend the deductive systems$$ G $$and$$ H $$from propositional logic to first-order logic by adding axioms and rules of inference for the universal quantifier. (The existential quantifier is defined as the dual of the universal quantifier.) The construction of semantic tableaux for first-order logic included restrictions on the use of constants and similar restrictions will be needed here. |
Author | Ben-Ari, Mordechai |
Author_xml | – sequence: 1 fullname: Ben-Ari, Mordechai |
BookMark | eNqNj01LAzEQhiN-oK39BV568Lqaydcm3qRaFQo9qOeQbiZ1te6uyVbw37uholcHZoZ34Bl4RuSgaRsk5AzoBVBaXppSF1AIUQ4DmClKq_fICPIhZ7X_F7Q-IielkcYIytkxmaT0SodSppSCn5DzeR1TXyyjxzhdtOu6upreoN9Wff2J08ev1ON7OiWHwW0STn72mDzPb59m98Viefcwu14UHXCmC4fovQcQTjoWkIpVWSkahrNEL3lQXguGK86h0sEHbYJRDlXFDCrlJONjAru_qYt1s8ZoV237lixQm73t4G3BZjObPe3gPTBix3Sx_dhi6i1mqMKmj25Tvbiux5is4gDaGAsqt_gvBpRT-Ytx_g0uB25Y |
ContentType | Book Chapter |
Copyright | Springer-Verlag London 2012 |
Copyright_xml | – notice: Springer-Verlag London 2012 |
DBID | FFUUA |
DEWEY | 511.3 |
DOI | 10.1007/978-1-4471-4129-7_8 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 1447141296 9781447141297 |
EndPage | 166 |
ExternalDocumentID | EBC6311899_169_164 EBC1030599_169_163 |
GroupedDBID | -EI 089 0D6 0DA 0E8 38. 8V7 A4J AABBV AAFYB AAPKO ABFCL ABFCV ABMNI ADWNV AEJLV AEKFX AETDV AEZAY AIJHZ AIMOO ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ FFUUA I4C IEZ JJU MA. PH7 PI1 SBO TGCOT TPJZQ UZ6 Z83 Z88 AAJYQ AATVQ ABBUY ABCYT ACDTA ACDUY AEHEY AHNNE ATJMZ |
ID | FETCH-LOGICAL-p1328-aeeddd114a5a2fe04b7c60faee5ed53f6d842eb331c8fdf89f96ae6c29e66a523 |
ISBN | 1447141288 9781447141280 |
IngestDate | Tue Jul 29 20:04:24 EDT 2025 Wed May 28 23:22:08 EDT 2025 Thu May 29 01:50:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | QA9 -- .B3955 2012eb |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1328-aeeddd114a5a2fe04b7c60faee5ed53f6d842eb331c8fdf89f96ae6c29e66a523 |
Notes | Original Abstract: We extend the deductive systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ G $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ H $$ \end{document} from propositional logic to first-order logic by adding axioms and rules of inference for the universal quantifier. (The existential quantifier is defined as the dual of the universal quantifier.) The construction of semantic tableaux for first-order logic included restrictions on the use of constants and similar restrictions will be needed here. |
OCLC | 795994032 |
PQID | EBC1030599_169_163 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_1_4471_4129_7_8 proquest_ebookcentralchapters_6311899_169_164 proquest_ebookcentralchapters_1030599_169_163 |
PublicationCentury | 2000 |
PublicationDate | 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom – name: London |
PublicationTitle | Mathematical Logic for Computer Science |
PublicationYear | 2012 |
Publisher | Springer London, Limited Springer London |
Publisher_xml | – name: Springer London, Limited – name: Springer London |
SSID | ssj0000697543 |
Score | 1.38842 |
Snippet | We extend the deductive systems$$ G $$and$$ H $$from propositional logic to first-order logic by adding axioms and rules of inference for the universal... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 155 |
SubjectTerms | First-order Logic Gentzen System Gentzen's Proof Mathematical foundations Mathematical logic Mathematical theory of computation Semantic Tableaux Universal Quantifier |
Title | First-Order Logic: Deductive Systems |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=1030599&ppg=163 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6311899&ppg=164 http://link.springer.com/10.1007/978-1-4471-4129-7_8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XtSLT3zTgycl0jaPJt58rIj4uKh4C2mSopdVdL34652kTbtbBNHDliWEIf0mTTKTmW8Q2qeWi0xTjQtmDIZVUmDtZIUlsaWA_YvrwM5_c8svH-jVE3vq6o6G7JJxeWS-fswr-Y9WoQ306rNk_6DZVig0wH_QLzxBw_DsHX6n3axNhaFIuOp90X4FCyGDsUxD_Gpbe9uN8EmdVn7j-TbNs36ZnC8XL3AOxHeeibOW5n0F557YNQQXTTKbN06CEG0x6SSITsLDrkbIdP5UbU6CcVVkFHas9MfFtYunALMTeoJqc4kLJbq9JN6fZzU1eY_Kenh6xglYNFKqjPsfnUWzhWADNHcyvLp-bJ1jKZcFoyQk4jVDEpGfKw6xpZCqWYJ7Q5oyGHp33OHocL-EFn06SeLzPGCQy2jGjVbQQqe8j1W0P4F9ErA_Tlrkkwb5NfRwMbw_u8RN9Qr8Bha-n_LOWgvmpmY6r1xKy8LwtIJm5iwjFbeC5q4kJDOispWQleTacZNLx7lmOVlHg9HryG2ghJosnERNSkpqCwp7kjCZ42UOAmghNxGOL6vCHXsT2GvqV_tQvpYca1Env_bvaWkTHUQEle_uBdZk14C8ypRHXnnkFSC_9Ufh22i-m7E7aDB-_3S7cNAbl3vNtPgGEcxNDw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Logic+for+Computer+Science&rft.au=Ben-Ari%2C+Mordechai&rft.atitle=First-Order+Logic%3A+Deductive+Systems&rft.date=2012-01-01&rft.pub=Springer+London%2C+Limited&rft.isbn=9781447141280&rft_id=info:doi/10.1007%2F978-1-4471-4129-7_8&rft.externalDBID=164&rft.externalDocID=EBC6311899_169_164 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F1030599-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6311899-l.jpg |