基于地面光谱联合SAR多源数据的农田表土氮磷监测

【目的】建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展。【方法】以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture Radar)四极化后向散射数据,通过对土壤氮磷特征波段的选择,建模评价土壤氮磷量。首先利用光谱反射率,及其对数、一阶与二阶导数4种光谱数据,进行相关性分析而滤选获取了与氮磷相关系数均大于0.4的近红外1 480、2 050、2 314 nm等特征波段,同时利用1~8层小波分析与重构图谱技术去除噪声,排除特异值干扰。小波去...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 39; no. 12; pp. 120 - 127
Main Authors Yule, SUN, QU Zhongyi, LIU Quanming
Format Journal Article
LanguageChinese
English
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.12.2020
内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2019465

Cover

Abstract 【目的】建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展。【方法】以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture Radar)四极化后向散射数据,通过对土壤氮磷特征波段的选择,建模评价土壤氮磷量。首先利用光谱反射率,及其对数、一阶与二阶导数4种光谱数据,进行相关性分析而滤选获取了与氮磷相关系数均大于0.4的近红外1 480、2 050、2 314 nm等特征波段,同时利用1~8层小波分析与重构图谱技术去除噪声,排除特异值干扰。小波去噪后找到相关性强的特征波段,结合SAR后向散射系数,与氮磷做回归及神经网络输入,形成神经网络模型。【结果】通过对高光谱数据的小波分解和重构,能够有效提高反射率及其3种变换形式与土壤氮磷的相关性,尤其是低频分量的1~3层、高频分量的4~6层的效果更好。反射率一阶导数的神经网络模型为最佳预测模型,其对土壤氮、磷量的预测R2分别为0.749 6、0.759 2,均方差RMSE均为0.110 2,其模型的稳定性和预测精度优于多元线性回归模型。【结论】采用光谱联合SAR可以更好地快速预测土壤全氮、全磷。
AbstractList 【目的】建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展。【方法】以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture Radar)四极化后向散射数据,通过对土壤氮磷特征波段的选择,建模评价土壤氮磷量。首先利用光谱反射率,及其对数、一阶与二阶导数4种光谱数据,进行相关性分析而滤选获取了与氮磷相关系数均大于0.4的近红外1 480、2 050、2 314 nm等特征波段,同时利用1~8层小波分析与重构图谱技术去除噪声,排除特异值干扰。小波去噪后找到相关性强的特征波段,结合SAR后向散射系数,与氮磷做回归及神经网络输入,形成神经网络模型。【结果】通过对高光谱数据的小波分解和重构,能够有效提高反射率及其3种变换形式与土壤氮磷的相关性,尤其是低频分量的1~3层、高频分量的4~6层的效果更好。反射率一阶导数的神经网络模型为最佳预测模型,其对土壤氮、磷量的预测R2分别为0.749 6、0.759 2,均方差RMSE均为0.110 2,其模型的稳定性和预测精度优于多元线性回归模型。【结论】采用光谱联合SAR可以更好地快速预测土壤全氮、全磷。
S152.7%P628.2; [目的]建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展.[方法]以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture Radar)四极化后向散射数据,通过对土壤氮磷特征波段的选择,建模评价土壤氮磷量.首先利用光谱反射率,及其对数、一阶与二阶导数4种光谱数据,进行相关性分析而滤选获取了与氮磷相关系数均大于0.4的近红外1480、2 050、2 314nm等特征波段,同时利用1~8层小波分析与重构图谱技术去除噪声,排除特异值干扰.小波去噪后找到相关性强的特征波段,结合SAR后向散射系数,与氮磷做回归及神经网络输入,形成神经网络模型.[结果]通过对高光谱数据的小波分解和重构,能够有效提高反射率及其3种变换形式与土壤氮磷的相关性,尤其是低频分量的1~3层、高频分量的4~6层的效果更好.反射率一阶导数的神经网络模型为最佳预测模型,其对土壤氮、磷量的预测R2分别为0.749 6、0.7592,均方差RMSE均为0.1102,其模型的稳定性和预测精度优于多元线性回归模型.[结论]采用光谱联合SAR可以更好地快速预测土壤全氮、全磷.
Author Yule, SUN
QU Zhongyi
LIU Quanming
AuthorAffiliation 内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
AuthorAffiliation_xml – name: 内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
Author_FL QU Zhongyi
LIU Quanming
SUN Yule
Author_FL_xml – sequence: 1
  fullname: SUN Yule
– sequence: 2
  fullname: QU Zhongyi
– sequence: 3
  fullname: LIU Quanming
Author_xml – sequence: 1
  givenname: SUN
  surname: Yule
  fullname: Yule, SUN
– sequence: 2
  fullname: QU Zhongyi
– sequence: 3
  fullname: LIU Quanming
BookMark eNpFj7tKA0EYhaeIYNS8gZ1Y7joz_1zLGLxBQPBSh3E3G4yyiVmDtaCiiBIhNjESvBRWYS1EyPM4u_EtXIkgHDjNxzl8MygXNsIqQvMEuwQ4pUt11wsP9t1arRm5FBPNBM-hPBGSOgBETqNCFNUxxpRjyTXk0bIdjL5Gt7Yffz8-2_Orcfw-Pu3azuV2ccu-9pJRJ7mPk5th2juzF_20G4-f3mx_kMTD9OUzfbhLPq7n0FRgDqNq4a9n0e7qyk5p3Slvrm2UimWnSagSjgyYb4I9Ax4FrJQQoKWSypdGYywA-xyoAeb5PuOgiWcwaE2UwJwBlUBgFi1Odk9MGJiwVqk32q0we6z86lKc-WYRGbcw4ZqtxlG7Gh3_g4C1osCY5vADFb5uwg
ClassificationCodes S152.7%P628.2
ContentType Journal Article
Copyright Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2020
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2020
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
7XB
8FE
8FH
8FK
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13522/j.cnki.ggps.2019465
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Agricultural Science Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Monitoring of Nitrogen and Phosphorus in Farmland Topsoil Based on Multi-source Data of Ground Spectrum Combined with SAR
EndPage 127
ExternalDocumentID ggps202012016
GrantInformation_xml – fundername: (国家重大科技专项); (国家自然科学基金项目); (内蒙古农业大学"双一流"学科创新团队建设人才培育项目)
  funderid: (国家重大科技专项); (国家自然科学基金项目); (内蒙古农业大学"双一流"学科创新团队建设人才培育项目)
GroupedDBID 3V.
5XA
5XE
7X2
7XB
8FE
8FH
8FK
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CW9
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
TGD
U1G
U5N
2B.
4A8
92G
92I
93N
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-p1286-7f4dafba3c2308866397878d7a900630d532a34cdd45391ca0399186054327313
IEDL.DBID BENPR
ISSN 1672-3317
IngestDate Thu May 29 04:05:16 EDT 2025
Sat Aug 23 12:59:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 小波变换
土壤氮磷
神经网络
模型
高光谱
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1286-7f4dafba3c2308866397878d7a900630d532a34cdd45391ca0399186054327313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098234495
PQPubID 6843760
PageCount 8
ParticipantIDs wanfang_journals_ggps202012016
proquest_journals_3098234495
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Xinxiang City
PublicationPlace_xml – name: Xinxiang City
PublicationTitle Guanʻgai paishui xuebao
PublicationTitle_FL Journal of Irrigation and Drainage
PublicationYear 2020
Publisher Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
Publisher_xml – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
– name: 内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018
SSID ssj0002507593
ssib002264380
ssib001101356
ssib051374040
ssib046786310
ssib006567438
Score 2.2200856
Snippet 【目的】建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展。【方法】以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture...
S152.7%P628.2; [目的]建立更为精确的高光谱预测模型,以便更加精准地、快速地测定土壤表土氮磷量,进一步推动多源遥感技术在现代化高标准农业生产与管理中的应用和发展.[方法]以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱反射率,联合C波段微波雷达SAR(Synthetic Aperture...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 120
SubjectTerms Agricultural land
Agricultural production
Backscattering
C band
Correlation analysis
Infrared analysis
Infrared filters
Microwave radar
Near infrared radiation
Neural networks
Nitrogen
Nutrients
Phosphorus
Prediction models
Radar
Reconstruction
Reflectance
Regression models
Remote sensing
Root-mean-square errors
Soil improvement
Soil layers
Soil nutrients
Soils
Spectral reflectance
Synthetic aperture radar
Technology assessment
Topsoil
Wavelet analysis
Wavelet transforms
Title 基于地面光谱联合SAR多源数据的农田表土氮磷监测
URI https://www.proquest.com/docview/3098234495
https://d.wanfangdata.com.cn/periodical/ggps202012016
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfAiiorP0oPXaJNNspuTWKkUwSJVwZtsNklRIa0vPAsqiigV9FIrxcfBk8SDCP09Jq3_wtl2fV08bzYws8t83zx2BqEJLtItGrglLqGuotsGVijDKSByFvFEvzTcKqJZyJnZFX1-1ViVAbcdWVb5ZRNbhtopchEjn8Ipi2pYBz4_XdpSxNQokV2VIzQ6URxMMIV7Hk9ncov57ygLADxpd95VTaIpGNBSvp8TxGNqY5L7m-uThUJJdO4Gf940_jDNrn3me8wv_IKcuV7UI7licqZ9uH2ow_X7UTqs1d_rF2E1-Li9D49Om8FL8-AqLJ8szeTDx0pUL0fXQXT-3KgchsfVxlXQvHsKq7UoeG48vDVuLqPXswG0MpdZns0qchCCUgKpTIV4usM8m2EODgOlpkjGUUIdwqxWzyzHwBrDOncc3cCWylkKaIdKwVPRMdATFQ-imF_03SGUVEFMz6Iq4ZqqM8-gzPM0N8UdmwJW23wYjX2JvyZv887aj-6HUUKq5GdVaE8D1il-bY78v38UdYtP2_UgYyi2u73njgOq79oJeXSfEZKzsQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQZNtxgBuyWp5hapuiZJpsa6FonGBsCGnKV5Gui8NGPwIhpfPzOPUBOvCNMIJoZ1sL0woGWVsDIRXFCn5CeDxsj1jQ0sLYyMTYDtefuCQl3QrVGg2VXYFRqQZOGdWlkO7LIV23q6AONX1cjIzTXE2UMXequAbgGwLDbTNU8zSUlMS0o0Tga2vi0szEAzWxbmFinmiZbgA6hSTI2NEo1NklNSTEyNLQ2TEw2AdbihBbDZb2IMrOsNjYHmMjOwmoB2tLIwsDq5-gUEwUd1gA0Kc8hJv4Zm5ka6xsDaGbpfD9TQ0c_SS87LztRLTy8AnRRuaGliZorSsmUvT8xLS8xLR6ri3AQZ-KFtUwVHSGISYmBKzRNhcHo6f9eTXX1P52x4OXfR09bOFxs2vmic8nRCR7Bj0NMls57tmvBs6oZnveuez2p52jbn-ZQNLxaueDpn_rMN654v3v589sRnW7tFGUJpEkRiDCx5-XmpEgwKhkBvpllaGJonGxmaJKaZWiSmpRmlGiSnJFkA2wZJyZIMMjDvx0NzT3E8Iq4lGeSgQYKQBYWeEbCVCzLaTAq_fnkGTo8QX594H08_b2kGLpA2yFoUGQaWkqLSVFlgi6IkSQ4ajQoMCbROOQC9Ou0C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9C%B0%E9%9D%A2%E5%85%89%E8%B0%B1%E8%81%94%E5%90%88SAR%E5%A4%9A%E6%BA%90%E6%95%B0%E6%8D%AE%E7%9A%84%E5%86%9C%E7%94%B0%E8%A1%A8%E5%9C%9F%E6%B0%AE%E7%A3%B7%E7%9B%91%E6%B5%8B&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%AE%87%E4%B9%90&rft.au=%E5%B1%88%E5%BF%A0%E4%B9%89&rft.au=%E5%88%98%E5%85%A8%E6%98%8E&rft.date=2020-12-01&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E4%B8%8E%E5%9C%9F%E6%9C%A8%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9010018&rft.issn=1672-3317&rft.volume=39&rft.issue=12&rft.spage=120&rft.epage=127&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2019465&rft.externalDocID=ggps202012016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg