基于机器学习算法的棉田土壤钾、钠离子量预测
【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0....
Saved in:
Published in | Guanʻgai paishui xuebao Vol. 42; no. 9; pp. 32 - 39 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Xinxiang City
Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
01.01.2023
塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300 |
Subjects | |
Online Access | Get full text |
ISSN | 1672-3317 |
DOI | 10.13522/j.cnki.ggps.2022405 |
Cover
Abstract | 【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0.119、0.218、0.218 g/kg和0.223 g/kg;R2分别为0.687、0.437、0.430和0.395。对测试样本Na+量预测的MAE分别为0.841、2.841、2.826 g/kg和2.856 g/kg;RMSE分别为1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200。将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和0.106 g/kg,RMSE分别为0.135、0.135、0.069 g/kg和0.126 g/kg;对Na+量预测的MAE分别为0.540、0.619、0.835 g/kg和1.371 g/kg,RMSE分别为0.636、0.748、1.198 g/kg和1.710 g/kg。【结论】SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法。 |
---|---|
AbstractList | 【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0.119、0.218、0.218 g/kg和0.223 g/kg;R2分别为0.687、0.437、0.430和0.395。对测试样本Na+量预测的MAE分别为0.841、2.841、2.826 g/kg和2.856 g/kg;RMSE分别为1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200。将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和0.106 g/kg,RMSE分别为0.135、0.135、0.069 g/kg和0.126 g/kg;对Na+量预测的MAE分别为0.540、0.619、0.835 g/kg和1.371 g/kg,RMSE分别为0.636、0.748、1.198 g/kg和1.710 g/kg。【结论】SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法。 TP181; [目的]比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法.[方法]采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证.使用平均绝对误差(M4E)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估.[结果]4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg 和 0.167 g/kg;RMSE分别为 0.119、0.218、0.218 g/kg和 0.223 g/kg;R2分别为 0.687、0.437、0.430和 0.395.对测试样本 Na+量预测的 MAE分别为 0.841、2.841、2.826 g/kg 和 2.856 g/kg;RMSE 分别为 1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200.将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和 0.106 g/kg,RMSE分别为 0.135、0.135、0.069 g/kg和 0.126 g/kg;对 Na+量预测的 MAE分别为 0.540、0.619、0.835 g/kg和 1.371 g/kg,RMSE分别为 0.636、0.748、1.198 g/kg和 1.710 g/kg.[结论]SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法. |
Author | TANG Maosong WANG Xingpeng ZHAO Zeyi ZHANG, Nan LI, Guohui LI Mingfa |
AuthorAffiliation | 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300;农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000 |
AuthorAffiliation_xml | – name: 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300;农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000 |
Author_FL | TANG Maosong WANG Xingpeng ZHAO Zeyi LI Guohui ZHANG Nan LI Mingfa |
Author_FL_xml | – sequence: 1 fullname: TANG Maosong – sequence: 2 fullname: ZHANG Nan – sequence: 3 fullname: LI Guohui – sequence: 4 fullname: ZHAO Zeyi – sequence: 5 fullname: LI Mingfa – sequence: 6 fullname: WANG Xingpeng |
Author_xml | – sequence: 1 fullname: TANG Maosong – sequence: 2 givenname: Nan surname: ZHANG fullname: ZHANG, Nan – sequence: 3 givenname: Guohui surname: LI fullname: LI, Guohui – sequence: 4 fullname: ZHAO Zeyi – sequence: 5 fullname: LI Mingfa – sequence: 6 fullname: WANG Xingpeng |
BookMark | eNpFj8tKw0AUhmdRwVr7Bu7EZeKZM51MZiVSvEHBja5LLpNglbQ2FrcKBRFBpSiiFFqsFDcVQVxYwZexSchbGKng6t98_22O5IJ6oAhZoKBTxhGXa7oT7O_pvt8IdQTEEvAcyVNDoMYYFbOkGIY1AEAOgkuWJytRbzwZX8bdcXT_HI2Gk49-8nIXv90mD-14cJ7cvEbdXjR4Sjtf3yenaaefDD-j0XV6dpU-tuP3i3ky41kHoSr-aYHsrq_tlDe1yvbGVnm1ojUomlxDqVwJDlLloWs6DnoGpVBiQiFQh1kuQ0-appVtdoVlCwlK2HZJ2i4yzmyPFcjSNPfYCjwr8Ku1eqsZZI3V36-ZjYEE4Bm3OOUazfphS4VH_2BGmIhUGIz9AJ-Eb4o |
ClassificationCodes | TP181 |
ContentType | Journal Article |
Copyright | 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 3V. 7X2 7XB 8FE 8FH 8FK AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13522/j.cnki.ggps.2022405 |
DatabaseName | ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) Agricultural Science Database Research Library Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Predicting Soil K+ and Na+ Contents in Cotton Field Using Machine Learning Algorithm |
EndPage | 39 |
ExternalDocumentID | ggps202309005 |
GrantInformation_xml | – fundername: (国家重点研发计划); (兵团重大科技项目); (塔里木大学研究生科研创新项目) funderid: (国家重点研发计划); (兵团重大科技项目); (塔里木大学研究生科研创新项目) |
GroupedDBID | 3V. 5XA 5XE 7X2 7XB 8FE 8FH 8FK ABJNI ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BHPHI CCPQU CW9 DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U TGD U1G U5N 2B. 4A8 92G 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-p1285-29ed90c21ef2d8cc2f6110437e201c3ad32f988a202d7ab790e7bb49bd2353bf3 |
IEDL.DBID | BENPR |
ISSN | 1672-3317 |
IngestDate | Thu May 29 03:56:07 EDT 2025 Sat Aug 23 12:59:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Keywords | 机器学习 回归预测模型 South Xinjiang cotton field 土壤盐分离子 soil salt ions machine learning 南疆棉田 regression prediction model |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1285-29ed90c21ef2d8cc2f6110437e201c3ad32f988a202d7ab790e7bb49bd2353bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3098221763 |
PQPubID | 6843760 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_ggps202309005 proquest_journals_3098221763 |
PublicationCentury | 2000 |
PublicationDate | 20230101 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Xinxiang City |
PublicationPlace_xml | – name: Xinxiang City |
PublicationTitle | Guanʻgai paishui xuebao |
PublicationTitle_FL | Journal of Irrigation and Drainage |
PublicationYear | 2023 |
Publisher | Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300 |
Publisher_xml | – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage – name: 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 – name: 农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000 – name: 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300 – name: 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300 |
SSID | ssj0002507593 ssib002264380 ssib001101356 ssib051374040 ssib046786310 ssib006567438 |
Score | 2.3241942 |
Snippet | ... TP181;... |
SourceID | wanfang proquest |
SourceType | Aggregation Database |
StartPage | 32 |
SubjectTerms | Algorithms Cotton Environmental changes Error analysis Learning algorithms Machine learning Mathematical models Regression analysis Root-mean-square errors Soil fertility Soil improvement Soil management Soils Support vector machines |
Title | 基于机器学习算法的棉田土壤钾、钠离子量预测 |
URI | https://www.proquest.com/docview/3098221763 https://d.wanfangdata.com.cn/periodical/ggps202309005 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIouKz9OB1dZvHZnMSFaV4EBEFb5LNZosKa7WKVwVBRFARRZRCi0rxUhHEgxX8M7ot_RcmbXxdPOdBMjOZbzKZzAAwHLiBwBxBK_CJY2GOscWZjgQgVCgJob7k9QDZWSe1iGeWyJJxuGVNWOWXTqwran9daB_5KLJ1prmkOg5jmQ1LV43Sr6umhEYziCkV7Co5j01Mzc7Nf3tZFMDTRubdpEOhhRRamv9z2vAYXR0R4drKSDqd0Zm7NbqRP5Zm6w4PAx6mf0HOdAdoN7ZiYrzB3E7QJMMuMBblyx_l40quHF3dR6Xix0uh-nBZebqoXu9Xbg-r549RLh_d3tXO3t5392pnhWrxNSqd1g5Oajf7leejbrA4PbUwmbJMFQQro7ZELMikz2wBkzKAvisEDBwF2RhRqbBbIO4jGDDX5Wr9PuUeZbaknoeZ50NEkBegHtASroeyFyRcD1I1CSNcMOxywqVAzFYXNCfpEYRFHxj82vuyEeXs8g_h-0Dc0OOnVZNOV2C3mTrO_f-PHwBtumvDgTEIWrY2t-WQgvQtL274Fq9fiT8B51i2OA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSbNISzZJNDbSTUsxNdM1STQx0U20BK0EMDVPBqYQ85TURPACWT8zj1ATrwjTCCaGdbC9MKBllbAyEVxQp-Qng8bI9Y0NQCfNGQKzg31BoS7o1ijQ7CrsCg1IsvBOrSwHdtmKbT1dgPGramTk5hri7KELvVVAtwBYFpvqGlmmplgaJBsZpqYZpVgkJxulmQGrQBNj81RgXZhsnJhibJRmaWGRaGRglGKemGRuaZBqnpRkYpmUYmRsapyUZgw0l5mB1QS0o5WFgdXJ1S8gCD6qA2xQmENO-jU0MzfSNQbWztD9eqCGjn6WXnJedqZeenoB6KRwUG1qitKyZS9PzEtLzEtHquLcBBn4oW1TBUdIYhJiYErNE2Gwfzp_15Ndfc_m7Ho6c8XTtcue7FzwfN30Z5unPp_V8mxx5_MpG57Omf908ZKXk_Y9bmh8OWnB82W7n66d8LK9_-Wilmdbu0UZQmkSPmIMLHn5eakSDAoWSUbmQEMsTROTLU0sEk0TU5ONLQ2AHUIzwyRTY5NkSQYZmN_joVmnOB4R0ZIMctDwQMiCgg5047uBJbD4kMKvX56B0yPE1yfex9PPW5qBC6QNMngiw8BSUlSaKgtsTpQkyUHjUIEhgdbJBgDnEPHK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E7%9A%84%E6%A3%89%E7%94%B0%E5%9C%9F%E5%A3%A4%E9%92%BE%E3%80%81%E9%92%A0%E7%A6%BB%E5%AD%90%E9%87%8F%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E8%8C%82%E6%B7%9E&rft.au=%E5%BC%A0%E6%A5%A0&rft.au=%E6%9D%8E%E5%9B%BD%E8%BE%89&rft.au=%E8%B5%B5%E6%B3%BD%E8%89%BA&rft.date=2023&rft.pub=%E5%A1%94%E9%87%8C%E6%9C%A8%E5%A4%A7%E5%AD%A6%E7%8E%B0%E4%BB%A3%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300%25%E6%96%B0%E7%96%86%E7%94%9F%E4%BA%A7%E5%BB%BA%E8%AE%BE%E5%85%B5%E5%9B%A2%E7%AC%AC%E4%B8%80%E5%B8%88%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E7%AE%A1%E7%90%86%E4%B8%AD%E5%BF%83%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300%25%E5%A1%94%E9%87%8C%E6%9C%A8%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E4%B8%8E%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300&rft.issn=1672-3317&rft.volume=42&rft.issue=9&rft.spage=32&rft.epage=39&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2022405&rft.externalDocID=ggps202309005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg |