基于机器学习算法的棉田土壤钾、钠离子量预测

【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0....

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 42; no. 9; pp. 32 - 39
Main Authors TANG Maosong, ZHANG, Nan, LI, Guohui, ZHAO Zeyi, LI Mingfa, WANG Xingpeng
Format Journal Article
LanguageChinese
English
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.01.2023
塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000
塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2022405

Cover

Abstract 【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0.119、0.218、0.218 g/kg和0.223 g/kg;R2分别为0.687、0.437、0.430和0.395。对测试样本Na+量预测的MAE分别为0.841、2.841、2.826 g/kg和2.856 g/kg;RMSE分别为1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200。将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和0.106 g/kg,RMSE分别为0.135、0.135、0.069 g/kg和0.126 g/kg;对Na+量预测的MAE分别为0.540、0.619、0.835 g/kg和1.371 g/kg,RMSE分别为0.636、0.748、1.198 g/kg和1.710 g/kg。【结论】SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法。
AbstractList 【目的】比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法。【方法】采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证。使用平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估。【结果】4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg和0.167 g/kg;RMSE分别为0.119、0.218、0.218 g/kg和0.223 g/kg;R2分别为0.687、0.437、0.430和0.395。对测试样本Na+量预测的MAE分别为0.841、2.841、2.826 g/kg和2.856 g/kg;RMSE分别为1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200。将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和0.106 g/kg,RMSE分别为0.135、0.135、0.069 g/kg和0.126 g/kg;对Na+量预测的MAE分别为0.540、0.619、0.835 g/kg和1.371 g/kg,RMSE分别为0.636、0.748、1.198 g/kg和1.710 g/kg。【结论】SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法。
TP181; [目的]比较4种机器学习方法对南疆棉田土壤K+、Na+量的预测结果,确定一种预测准确度较高的机器学习模型作为可供参考的方法.[方法]采用支持向量回归(SVR)、随机森林回归(RFR)、K-最近邻回归(KNNR)和梯度提升回归树(GBRT)4种机器学习算法,2020年棉田土壤K+、Na+量数据训练模型,2021年实测数据进行测试验证.使用平均绝对误差(M4E)、均方根误差(RMSE)和决定系数(R2)对模型预测结果进行评估.[结果]4种模型(SVR、RFR、KNNR和GBRT)对测试样本K+量预测的MAE分别为0.100、0.169、0.169 g/kg 和 0.167 g/kg;RMSE分别为 0.119、0.218、0.218 g/kg和 0.223 g/kg;R2分别为 0.687、0.437、0.430和 0.395.对测试样本 Na+量预测的 MAE分别为 0.841、2.841、2.826 g/kg 和 2.856 g/kg;RMSE 分别为 1.154、3.658、3.630 g/kg和3.650 g/kg;R2分别为0.838、0.299、0.219和0.200.将测试样本K+、Na+量分别按4个土层深度(0~10、10~20、20~30 cm和30~40 cm)进行预测时,SVR模型的误差值最小,其对K+量按照4个深度预测的MAE分别为0.122、0.114、0.056 g/kg和 0.106 g/kg,RMSE分别为 0.135、0.135、0.069 g/kg和 0.126 g/kg;对 Na+量预测的 MAE分别为 0.540、0.619、0.835 g/kg和 1.371 g/kg,RMSE分别为 0.636、0.748、1.198 g/kg和 1.710 g/kg.[结论]SVR模型预测K+、Na+量的精度最高,可推荐作为南疆棉田土壤钾、钠离子量预测的一种方法.
Author TANG Maosong
WANG Xingpeng
ZHAO Zeyi
ZHANG, Nan
LI, Guohui
LI Mingfa
AuthorAffiliation 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300;农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000
AuthorAffiliation_xml – name: 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300;塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300;农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000
Author_FL TANG Maosong
WANG Xingpeng
ZHAO Zeyi
LI Guohui
ZHANG Nan
LI Mingfa
Author_FL_xml – sequence: 1
  fullname: TANG Maosong
– sequence: 2
  fullname: ZHANG Nan
– sequence: 3
  fullname: LI Guohui
– sequence: 4
  fullname: ZHAO Zeyi
– sequence: 5
  fullname: LI Mingfa
– sequence: 6
  fullname: WANG Xingpeng
Author_xml – sequence: 1
  fullname: TANG Maosong
– sequence: 2
  givenname: Nan
  surname: ZHANG
  fullname: ZHANG, Nan
– sequence: 3
  givenname: Guohui
  surname: LI
  fullname: LI, Guohui
– sequence: 4
  fullname: ZHAO Zeyi
– sequence: 5
  fullname: LI Mingfa
– sequence: 6
  fullname: WANG Xingpeng
BookMark eNpFj8tKw0AUhmdRwVr7Bu7EZeKZM51MZiVSvEHBja5LLpNglbQ2FrcKBRFBpSiiFFqsFDcVQVxYwZexSchbGKng6t98_22O5IJ6oAhZoKBTxhGXa7oT7O_pvt8IdQTEEvAcyVNDoMYYFbOkGIY1AEAOgkuWJytRbzwZX8bdcXT_HI2Gk49-8nIXv90mD-14cJ7cvEbdXjR4Sjtf3yenaaefDD-j0XV6dpU-tuP3i3ky41kHoSr-aYHsrq_tlDe1yvbGVnm1ojUomlxDqVwJDlLloWs6DnoGpVBiQiFQh1kuQ0-appVtdoVlCwlK2HZJ2i4yzmyPFcjSNPfYCjwr8Ku1eqsZZI3V36-ZjYEE4Bm3OOUazfphS4VH_2BGmIhUGIz9AJ-Eb4o
ClassificationCodes TP181
ContentType Journal Article
Copyright 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
7XB
8FE
8FH
8FK
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13522/j.cnki.ggps.2022405
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
Agricultural Science Database
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Predicting Soil K+ and Na+ Contents in Cotton Field Using Machine Learning Algorithm
EndPage 39
ExternalDocumentID ggps202309005
GrantInformation_xml – fundername: (国家重点研发计划); (兵团重大科技项目); (塔里木大学研究生科研创新项目)
  funderid: (国家重点研发计划); (兵团重大科技项目); (塔里木大学研究生科研创新项目)
GroupedDBID 3V.
5XA
5XE
7X2
7XB
8FE
8FH
8FK
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CW9
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
TGD
U1G
U5N
2B.
4A8
92G
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-p1285-29ed90c21ef2d8cc2f6110437e201c3ad32f988a202d7ab790e7bb49bd2353bf3
IEDL.DBID BENPR
ISSN 1672-3317
IngestDate Thu May 29 03:56:07 EDT 2025
Sat Aug 23 12:59:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 机器学习
回归预测模型
South Xinjiang cotton field
土壤盐分离子
soil salt ions
machine learning
南疆棉田
regression prediction model
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1285-29ed90c21ef2d8cc2f6110437e201c3ad32f988a202d7ab790e7bb49bd2353bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098221763
PQPubID 6843760
PageCount 8
ParticipantIDs wanfang_journals_ggps202309005
proquest_journals_3098221763
PublicationCentury 2000
PublicationDate 20230101
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Xinxiang City
PublicationPlace_xml – name: Xinxiang City
PublicationTitle Guanʻgai paishui xuebao
PublicationTitle_FL Journal of Irrigation and Drainage
PublicationYear 2023
Publisher Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000
塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300
Publisher_xml – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
– name: 塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
– name: 农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000
– name: 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300
– name: 塔里木大学现代农业工程重点实验室,新疆阿拉尔 843300%新疆生产建设兵团第一师水文水资源管理中心,新疆阿拉尔 843300%塔里木大学水利与建筑工程学院,新疆阿拉尔 843300
SSID ssj0002507593
ssib002264380
ssib001101356
ssib051374040
ssib046786310
ssib006567438
Score 2.3241942
Snippet ...
TP181;...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 32
SubjectTerms Algorithms
Cotton
Environmental changes
Error analysis
Learning algorithms
Machine learning
Mathematical models
Regression analysis
Root-mean-square errors
Soil fertility
Soil improvement
Soil management
Soils
Support vector machines
Title 基于机器学习算法的棉田土壤钾、钠离子量预测
URI https://www.proquest.com/docview/3098221763
https://d.wanfangdata.com.cn/periodical/ggps202309005
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIouKz9OB1dZvHZnMSFaV4EBEFb5LNZosKa7WKVwVBRFARRZRCi0rxUhHEgxX8M7ot_RcmbXxdPOdBMjOZbzKZzAAwHLiBwBxBK_CJY2GOscWZjgQgVCgJob7k9QDZWSe1iGeWyJJxuGVNWOWXTqwran9daB_5KLJ1prmkOg5jmQ1LV43Sr6umhEYziCkV7Co5j01Mzc7Nf3tZFMDTRubdpEOhhRRamv9z2vAYXR0R4drKSDqd0Zm7NbqRP5Zm6w4PAx6mf0HOdAdoN7ZiYrzB3E7QJMMuMBblyx_l40quHF3dR6Xix0uh-nBZebqoXu9Xbg-r549RLh_d3tXO3t5392pnhWrxNSqd1g5Oajf7leejbrA4PbUwmbJMFQQro7ZELMikz2wBkzKAvisEDBwF2RhRqbBbIO4jGDDX5Wr9PuUeZbaknoeZ50NEkBegHtASroeyFyRcD1I1CSNcMOxywqVAzFYXNCfpEYRFHxj82vuyEeXs8g_h-0Dc0OOnVZNOV2C3mTrO_f-PHwBtumvDgTEIWrY2t-WQgvQtL274Fq9fiT8B51i2OA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSbNISzZJNDbSTUsxNdM1STQx0U20BK0EMDVPBqYQ85TURPACWT8zj1ATrwjTCCaGdbC9MKBllbAyEVxQp-Qng8bI9Y0NQCfNGQKzg31BoS7o1ijQ7CrsCg1IsvBOrSwHdtmKbT1dgPGramTk5hri7KELvVVAtwBYFpvqGlmmplgaJBsZpqYZpVgkJxulmQGrQBNj81RgXZhsnJhibJRmaWGRaGRglGKemGRuaZBqnpRkYpmUYmRsapyUZgw0l5mB1QS0o5WFgdXJ1S8gCD6qA2xQmENO-jU0MzfSNQbWztD9eqCGjn6WXnJedqZeenoB6KRwUG1qitKyZS9PzEtLzEtHquLcBBn4oW1TBUdIYhJiYErNE2Gwfzp_15Ndfc_m7Ho6c8XTtcue7FzwfN30Z5unPp_V8mxx5_MpG57Omf908ZKXk_Y9bmh8OWnB82W7n66d8LK9_-Wilmdbu0UZQmkSPmIMLHn5eakSDAoWSUbmQEMsTROTLU0sEk0TU5ONLQ2AHUIzwyRTY5NkSQYZmN_joVmnOB4R0ZIMctDwQMiCgg5047uBJbD4kMKvX56B0yPE1yfex9PPW5qBC6QNMngiw8BSUlSaKgtsTpQkyUHjUIEhgdbJBgDnEPHK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E7%9A%84%E6%A3%89%E7%94%B0%E5%9C%9F%E5%A3%A4%E9%92%BE%E3%80%81%E9%92%A0%E7%A6%BB%E5%AD%90%E9%87%8F%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E8%8C%82%E6%B7%9E&rft.au=%E5%BC%A0%E6%A5%A0&rft.au=%E6%9D%8E%E5%9B%BD%E8%BE%89&rft.au=%E8%B5%B5%E6%B3%BD%E8%89%BA&rft.date=2023&rft.pub=%E5%A1%94%E9%87%8C%E6%9C%A8%E5%A4%A7%E5%AD%A6%E7%8E%B0%E4%BB%A3%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300%25%E6%96%B0%E7%96%86%E7%94%9F%E4%BA%A7%E5%BB%BA%E8%AE%BE%E5%85%B5%E5%9B%A2%E7%AC%AC%E4%B8%80%E5%B8%88%E6%B0%B4%E6%96%87%E6%B0%B4%E8%B5%84%E6%BA%90%E7%AE%A1%E7%90%86%E4%B8%AD%E5%BF%83%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300%25%E5%A1%94%E9%87%8C%E6%9C%A8%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E4%B8%8E%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%96%B0%E7%96%86%E9%98%BF%E6%8B%89%E5%B0%94+843300&rft.issn=1672-3317&rft.volume=42&rft.issue=9&rft.spage=32&rft.epage=39&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2022405&rft.externalDocID=ggps202309005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg