Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and Ab initio calculations

The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 110; no. 7; p. 077203
Main Authors He, P, Ma, X, Zhang, J W, Zhao, H B, Lüpke, G, Shi, Z, Zhou, S M
Format Journal Article
LanguageEnglish
Published United States 15.02.2013
Online AccessGet more information

Cover

Loading…
Abstract The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than one order of magnitude is realized by changing the Pt/Pd concentration ratio showing that α(0) is proportional to ξ(2) as changes of other leading parameters are found to be negligible. The perpendicular magnetic anisotropy is shown to have a similar variation trend with x. The present results may facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.
AbstractList The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films by time-resolved magneto-optical Kerr effect measurements and spin-dependent ab initio calculations. Continuous tuning of α(0) over more than one order of magnitude is realized by changing the Pt/Pd concentration ratio showing that α(0) is proportional to ξ(2) as changes of other leading parameters are found to be negligible. The perpendicular magnetic anisotropy is shown to have a similar variation trend with x. The present results may facilitate the design and fabrication of new magnetic alloys with large perpendicular magnetic anisotropy and tailored damping properties.
Author Zhao, H B
Lüpke, G
Zhou, S M
Ma, X
He, P
Zhang, J W
Shi, Z
Author_xml – sequence: 1
  givenname: P
  surname: He
  fullname: He, P
  organization: Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433, China and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
– sequence: 2
  givenname: X
  surname: Ma
  fullname: Ma, X
  organization: Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, USA
– sequence: 3
  givenname: J W
  surname: Zhang
  fullname: Zhang, J W
  organization: Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
– sequence: 4
  givenname: H B
  surname: Zhao
  fullname: Zhao, H B
  organization: Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, USA and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
– sequence: 5
  givenname: G
  surname: Lüpke
  fullname: Lüpke, G
  organization: Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, USA
– sequence: 6
  givenname: Z
  surname: Shi
  fullname: Shi, Z
  organization: Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
– sequence: 7
  givenname: S M
  surname: Zhou
  fullname: Zhou, S M
  organization: Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433, China and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25166400$$D View this record in MEDLINE/PubMed
BookMark eNo1UFlOwzAQtRCILnCFyhdI8cRJHPNXVbQgRSIg-K4c26FGiRPFDrQH4N64LF8zesu8p5mhc9tZjdACyBKA0Jtyf3TP-qPQ3p-AJWEsJvQMTYEwHjGAZIJmzr0TQiDO8ks0iVPIsoSQKfp6GoUahDcSOykaY99wV2Nj_WCsC-DWNJUePFai7U_kp_F77MIadUNlvGiw7Mb-x2csLoDgjS5V6XFtmtbdYn3o9WBabb3Dwiq8qoLOeNPhkCbHJiR31l2hi1o0Tl__zTl63dy9rO-j4nH7sF4VUR-K-0jxBCrGNaHAGE0gzbUIUCZpFfOECSZpTTPO01rmgkEWpEqnTAZHnQuexnO0-L3bj1Wr1a4P1cRw3P3_I_4GEMJmnw
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.110.077203
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 25166400
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-p126t-d941b79e0317734158ea9416c3b2947a7c3f36995fc8a71679ede57c9e0f8a952
IngestDate Tue Oct 15 23:50:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p126t-d941b79e0317734158ea9416c3b2947a7c3f36995fc8a71679ede57c9e0f8a952
PMID 25166400
ParticipantIDs pubmed_primary_25166400
PublicationCentury 2000
PublicationDate 2013-Feb-15
PublicationDateYYYYMMDD 2013-02-15
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-Feb-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2013
SSID ssj0001268
Score 2.5310528
Snippet The dependence of the intrinsic Gilbert damping parameter α(0) on the spin-orbital coupling strength ξ is investigated in L1(0) ordered FePd(1-x) Pt(x) films...
SourceID pubmed
SourceType Index Database
StartPage 077203
Title Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and Ab initio calculations
URI https://www.ncbi.nlm.nih.gov/pubmed/25166400
Volume 110
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWcFAVyKdI1XcFDbwJdWaJIsTejaGoETeAWCepbQFIUYCCWBVvOIff-RL42w0WKmrjochGEoall5pkajebNIPQ-TqTRqTAkGaWKUHhgEJUqG4ZTUrGiBJ_dEpyPT9jkjB7NstlgcN3LWto0aqivtvJK_seqIAO7WpbsP1i2OygIYB_sC1uwMGz_ysbfNrJYuZKra1B1yF-eV81qXoHyoy9zW8CqiQq5qLuY6xp2yXKlbLOQSC839UVgtXwdxdGhmRZTV6xp4VLlbuv_-1LOYwW_tEleEZxPh85f676DO23tHjgxF44u1Dnuk185ZcfOdZ3di14fRT96MhfNnYT-0CFCYbtFJMRzNIfGr6oxF4SPPFu0W3ZDOqvHF-8tojG334a3r--xrTNhb-W7ubSEJysa3p8AKqoXzurgvzFGXTXUP4zeqbvdDu2gHZ7btfPExoH22ugdywPfHC7pw_YLsoWmw0HuvLQ45-V0Hz0Kbx147CH0GA1M9QQ99LZaP0U_OyDhACS8LHEHJByAhAOQsAUS7gMJt0CCSRiAhD2QsAPSR9yDEQYY4bHCHka4D6Nn6Ozw8-mnCQn9OUgN99-QQtCR4sLAc4Fz8Iay3EgQMZ2qRFAuuU7LlAlh0wQlt9_7TGEyrmFGmUuRJc_RbrWszAHC4MdKlgtJeVpQSY3IqdCx5nmeMa5S-hK98Po7r30RlvNWs69-O_Ia7d2i8Q16UMK_3rwFF7JR75w1bwB44XHU
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadratic+scaling+of+intrinsic+Gilbert+damping+with+spin-orbital+coupling+in+L10+FePdPt+films%3A+experiments+and+Ab+initio+calculations&rft.jtitle=Physical+review+letters&rft.au=He%2C+P&rft.au=Ma%2C+X&rft.au=Zhang%2C+J+W&rft.au=Zhao%2C+H+B&rft.date=2013-02-15&rft.eissn=1079-7114&rft.volume=110&rft.issue=7&rft.spage=077203&rft_id=info:doi/10.1103%2FPhysRevLett.110.077203&rft_id=info%3Apmid%2F25166400&rft_id=info%3Apmid%2F25166400&rft.externalDocID=25166400