Developmental mechanisms of vertebrate limb evolution

Over the past few years, our understanding of the evolution of limbs has been improved by important new discoveries in the fossil record. Additionally, rapid progress has been made in identifying the molecular basis of vertebrate limb development. It is now possible to integrate these two areas of r...

Full description

Saved in:
Bibliographic Details
Published inNovartis Foundation symposium Vol. 232; p. 47
Main Author Cohn, M J
Format Journal Article
LanguageEnglish
Published England 2001
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Over the past few years, our understanding of the evolution of limbs has been improved by important new discoveries in the fossil record. Additionally, rapid progress has been made in identifying the molecular basis of vertebrate limb development. It is now possible to integrate these two areas of research in order to identify the molecular developmental mechanisms underlying the evolution of paired appendages in vertebrates. After the origin of paired appendages, several vertebrate lineages reduced or eliminated fins and limbs and returned to the limbless condition. Examples include eels, caecilians, snakes, slow worms and several marine mammals. Analyses of fossil and extant vertebrates show that evolution of limblessness frequently occurred together with elongation of the trunk and loss of clear morphological boundaries in the vertebral column. This may be suggestive of a common developmental mechanism linking these two processes. We have addressed this question by analysing python embryonic development at tissue, cellular and molecular levels, and we have identified a developmental mechanism which may account for evolution of limb loss in these animals.
ISSN:1528-2511