Model for the hydrogen adsorption on carbon nanostructures

The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensat...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 78; no. 7; pp. 941 - 946
Main Authors Zuttel, A, Sudan, P, Mauron, P, Wenger, P
Format Journal Article
LanguageEnglish
Published 01.04.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%{/content/J96FY7F0 G GKDL432/xxlarge8201.gif}S[mg]=3.0 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%/mg. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption process.
AbstractList The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%{/content/J96FY7F0 G GKDL432/xxlarge8201.gif}S[mg]=3.0 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%/mg. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption process.
Author Mauron, P
Wenger, P
Zuttel, A
Sudan, P
Author_xml – sequence: 1
  givenname: A
  surname: Zuttel
  fullname: Zuttel, A
– sequence: 2
  givenname: P
  surname: Sudan
  fullname: Sudan, P
– sequence: 3
  givenname: P
  surname: Mauron
  fullname: Mauron, P
– sequence: 4
  givenname: P
  surname: Wenger
  fullname: Wenger, P
BookMark eNotjLtOAzEURC0UJJLAB9BtSWO4vna8Nh2KeElBNFBHftwlQYu92LsFf89KMDqao2lmxRYpJ2LsUsC1AGhvKoCUls_NUQnk4oQthZLIQUtYsCVY1XIjrT5jq1o_YY5CXLLblxypb7pcmvFAzeEnlvxBqXGx5jKMx5yameCKn5VcynUsUxinQvWcnXaur3Tx7zV7f7h_2z7x3evj8_ZuxwchzMg9GgwqarOREQVGs_EmOmkjaOHAhS7YlqhzpMAh-mg6jxR8sAgwbyvX7Orvdyj5e6I67r-ONVDfu0R5qnuhW6G0UUrLX-1HTkQ
ContentType Journal Article
DBID 7U5
8BQ
8FD
H8D
JG9
L7M
DOI 10.1007/s00339-003-2412-1
DatabaseName Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
EndPage 946
GroupedDBID -XW
-XX
-Y2
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
7U5
8BQ
8FD
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H8D
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JG9
JZLTJ
KDC
KOV
KOW
L7M
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
~8M
~EX
ID FETCH-LOGICAL-p118t-b282c4d6853d212d85b8da39d061a0acfc97eefae40a22bd8fb2ecbc920022b93
ISSN 0947-8396
IngestDate Sun Aug 24 04:08:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p118t-b282c4d6853d212d85b8da39d061a0acfc97eefae40a22bd8fb2ecbc920022b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671468446
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1671468446
PublicationCentury 2000
PublicationDate 20040401
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 20040401
  day: 01
PublicationDecade 2000
PublicationTitle Applied physics. A, Materials science & processing
PublicationYear 2004
SSID ssj0000422
Score 2.1300623
Snippet The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published...
SourceID proquest
SourceType Aggregation Database
StartPage 941
SubjectTerms Adsorption
Carbon
Nanomaterials
Nanostructure
Nanotubes
Sorption
Surface chemistry
Tubes
Title Model for the hydrogen adsorption on carbon nanostructures
URI https://www.proquest.com/docview/1671468446
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagCAkOaHmJx7IKErfKqHFcO95bWagQ4iXRit4qvyIOKEFpe4Bfv-M6blKxB1gpSisrapvM15nxeL7PCJ1p0zHcZjEWQhMMEUJhRViCuY1lSgFCWjhy8t09ux7Sm1F3VAsqzNklU3WuP_7JK_kfq8IY2NWxZL9h2cWHwgC8B_vCGSwM5y_Z2G1k9rpoFHx5N2UB17almRSldwVwaFkqeMllXnix2FlZ9Q0G8dkqEfVFjsl5u-dJPFN_C-3A_HEgefO8ghDvXMXZ7XT9ulQVfZoZX1ZdcMfu5KwsloeeXTttWQ-FykOzYaUqIVKIcImopKy9A6UJwU7Hq-lhedpAEm-4S-FFr6rIK3wx8pNT930cE7ftnMCulw6yDoLjOoKFVfv7h3F_eHs7HlyNBqtojcDMgbTQWu_i8qJfh2fql5bCjw9L3Z25suzyV3wK0POsY_ADbVXThajnbb-NVmy-gzYbIpI7aP3R220X_Z7jIQI8RICHKOAhqvEQweHxEC3jYQ8N-1eDP9e42hsDv8GUcAp_qJRoahhkWwayD5N2VWpkIgzkZ7IjdaYFtzaTlnYkIcqkmSJWKy1cUw5RItlHrbzI7QGKYAavnSwj04xRyFZTbbsxTww8Cp51GT9Ep-EhjMH3uAUlmdtiNhnHjDvmHqXs6AvXHKONGkU_UQtu0Z5ARjdVvyob_QX8q0r_
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+for+the+hydrogen+adsorption+on+carbon+nanostructures&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Zuttel%2C+A&rft.au=Sudan%2C+P&rft.au=Mauron%2C+P&rft.au=Wenger%2C+P&rft.date=2004-04-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=78&rft.issue=7&rft.spage=941&rft.epage=946&rft_id=info:doi/10.1007%2Fs00339-003-2412-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon