Model for the hydrogen adsorption on carbon nanostructures
The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensat...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 78; no. 7; pp. 941 - 946 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%{/content/J96FY7F0 G GKDL432/xxlarge8201.gif}S[mg]=3.0 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%/mg. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption process. |
---|---|
AbstractList | The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%{/content/J96FY7F0 G GKDL432/xxlarge8201.gif}S[mg]=3.0 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}% and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5X10 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%/mg. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2 mass{/content/J96FY7F0GGKDL432/xxlarge8201.gif}%. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption process. |
Author | Mauron, P Wenger, P Zuttel, A Sudan, P |
Author_xml | – sequence: 1 givenname: A surname: Zuttel fullname: Zuttel, A – sequence: 2 givenname: P surname: Sudan fullname: Sudan, P – sequence: 3 givenname: P surname: Mauron fullname: Mauron, P – sequence: 4 givenname: P surname: Wenger fullname: Wenger, P |
BookMark | eNotjLtOAzEURC0UJJLAB9BtSWO4vna8Nh2KeElBNFBHftwlQYu92LsFf89KMDqao2lmxRYpJ2LsUsC1AGhvKoCUls_NUQnk4oQthZLIQUtYsCVY1XIjrT5jq1o_YY5CXLLblxypb7pcmvFAzeEnlvxBqXGx5jKMx5yameCKn5VcynUsUxinQvWcnXaur3Tx7zV7f7h_2z7x3evj8_ZuxwchzMg9GgwqarOREQVGs_EmOmkjaOHAhS7YlqhzpMAh-mg6jxR8sAgwbyvX7Orvdyj5e6I67r-ONVDfu0R5qnuhW6G0UUrLX-1HTkQ |
ContentType | Journal Article |
DBID | 7U5 8BQ 8FD H8D JG9 L7M |
DOI | 10.1007/s00339-003-2412-1 |
DatabaseName | Solid State and Superconductivity Abstracts METADEX Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0630 |
EndPage | 946 |
GroupedDBID | -XW -XX -Y2 -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 7U5 8BQ 8FD 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H8D HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JG9 JZLTJ KDC KOV KOW L7M LAS LLZTM M4Y MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK8 YLTOR Z45 ZE2 ZMTXR ~8M ~EX |
ID | FETCH-LOGICAL-p118t-b282c4d6853d212d85b8da39d061a0acfc97eefae40a22bd8fb2ecbc920022b93 |
ISSN | 0947-8396 |
IngestDate | Sun Aug 24 04:08:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p118t-b282c4d6853d212d85b8da39d061a0acfc97eefae40a22bd8fb2ecbc920022b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671468446 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1671468446 |
PublicationCentury | 2000 |
PublicationDate | 20040401 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 20040401 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Applied physics. A, Materials science & processing |
PublicationYear | 2004 |
SSID | ssj0000422 |
Score | 2.1300623 |
Snippet | The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 941 |
SubjectTerms | Adsorption Carbon Nanomaterials Nanostructure Nanotubes Sorption Surface chemistry Tubes |
Title | Model for the hydrogen adsorption on carbon nanostructures |
URI | https://www.proquest.com/docview/1671468446 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagCAkOaHmJx7IKErfKqHFcO95bWagQ4iXRit4qvyIOKEFpe4Bfv-M6blKxB1gpSisrapvM15nxeL7PCJ1p0zHcZjEWQhMMEUJhRViCuY1lSgFCWjhy8t09ux7Sm1F3VAsqzNklU3WuP_7JK_kfq8IY2NWxZL9h2cWHwgC8B_vCGSwM5y_Z2G1k9rpoFHx5N2UB17almRSldwVwaFkqeMllXnix2FlZ9Q0G8dkqEfVFjsl5u-dJPFN_C-3A_HEgefO8ghDvXMXZ7XT9ulQVfZoZX1ZdcMfu5KwsloeeXTttWQ-FykOzYaUqIVKIcImopKy9A6UJwU7Hq-lhedpAEm-4S-FFr6rIK3wx8pNT930cE7ftnMCulw6yDoLjOoKFVfv7h3F_eHs7HlyNBqtojcDMgbTQWu_i8qJfh2fql5bCjw9L3Z25suzyV3wK0POsY_ADbVXThajnbb-NVmy-gzYbIpI7aP3R220X_Z7jIQI8RICHKOAhqvEQweHxEC3jYQ8N-1eDP9e42hsDv8GUcAp_qJRoahhkWwayD5N2VWpkIgzkZ7IjdaYFtzaTlnYkIcqkmSJWKy1cUw5RItlHrbzI7QGKYAavnSwj04xRyFZTbbsxTww8Cp51GT9Ep-EhjMH3uAUlmdtiNhnHjDvmHqXs6AvXHKONGkU_UQtu0Z5ARjdVvyob_QX8q0r_ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+for+the+hydrogen+adsorption+on+carbon+nanostructures&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Zuttel%2C+A&rft.au=Sudan%2C+P&rft.au=Mauron%2C+P&rft.au=Wenger%2C+P&rft.date=2004-04-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=78&rft.issue=7&rft.spage=941&rft.epage=946&rft_id=info:doi/10.1007%2Fs00339-003-2412-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon |