Discovering New Robust Local Search Algorithms with Neuro-Evolution

This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To impr...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 6; no. 7; p. 780
Main Authors Amri Sakhri, Mohamed Salim, Goëffon, Adrien, Goudet, Olivier, Saubion, Frédéric, Touhami, Chaïmaâ
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems.
AbstractList This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems.
Author Saubion, Frédéric
Amri Sakhri, Mohamed Salim
Goëffon, Adrien
Touhami, Chaïmaâ
Goudet, Olivier
Author_xml – sequence: 1
  givenname: Mohamed Salim
  surname: Amri Sakhri
  fullname: Amri Sakhri, Mohamed Salim
  organization: LERIA, Université d’Angers
– sequence: 2
  givenname: Adrien
  surname: Goëffon
  fullname: Goëffon, Adrien
  organization: LERIA, Université d’Angers
– sequence: 3
  givenname: Olivier
  orcidid: 0000-0001-7040-5052
  surname: Goudet
  fullname: Goudet, Olivier
  email: olivier.goudet@univ-angers.fr
  organization: LERIA, Université d’Angers
– sequence: 4
  givenname: Frédéric
  surname: Saubion
  fullname: Saubion, Frédéric
  organization: LERIA, Université d’Angers
– sequence: 5
  givenname: Chaïmaâ
  surname: Touhami
  fullname: Touhami, Chaïmaâ
  organization: LERIA, Université d’Angers
BookMark eNpFkEtLAzEUhYNUsNb-AVcDrqNJ5ua1LLU-YFDwAe7CPDLtlHFSk5n275tpBVfnLD7O5X6XaNK5ziJ0TcktJUTeBWBaakwYxwRYbPwMTZkQFCtN5OTYGdaaf12geQhbQiJKAASfouV9E0q3t77p1smLPSRvrhhCn2SuzNvk3ea-3CSLdu1802--Q3KIEbnBO7zau3boG9ddofM6b4Od_-UMfT6sPpZPOHt9fF4uMryjVHDMqSx0VWmtgGolCrBayTKHVBHLpRVMCcaoFDTlYEtGqzovgJcMcg681pDO0M1pd-fdz2BDb7Zu8F08aVIGENcUHan0RIXd-JT1_xQlZhRmTsJMtGCOwgxPfwEarV4M
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
JQ2
DOI 10.1007/s42979-025-04279-5
DatabaseName Springer Nature OA Free Journals
ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_025_04279_5
GrantInformation_xml – fundername: Université d'Angers
– fundername: Agence Nationale de la Recherche
  grantid: PRC - AAPG 2023 - Axe E.2 - CE23
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID 0R~
2JN
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABHQN
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKFA
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BAPOH
BSONS
C6C
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
JQ2
ID FETCH-LOGICAL-p1165-517b9dd99841986b4e987ca4380e57e6286221761354ec21dfab45c24a545f943
IEDL.DBID C6C
ISSN 2662-995X
IngestDate Sun Aug 31 02:47:37 EDT 2025
Sat Aug 30 01:19:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Local search
Neuro-evolution
NK landscapes
Black-box optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1165-517b9dd99841986b4e987ca4380e57e6286221761354ec21dfab45c24a545f943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7040-5052
OpenAccessLink https://doi.org/10.1007/s42979-025-04279-5
PQID 3244987814
PQPubID 6623307
ParticipantIDs proquest_journals_3244987814
springer_journals_10_1007_s42979_025_04279_5
PublicationCentury 2000
PublicationDate 20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251001
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
SSID ssj0002504465
Score 2.305123
Snippet This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 780
SubjectTerms Algorithms
Boolean
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Heuristic
Information Systems and Communication Service
Machine learning
Neighborhoods
Neural networks
Optimization
Original Research
Pattern Recognition and Graphics
Problem solving
Robustness
Ruggedness
Search algorithms
Software Engineering/Programming and Operating Systems
Traveling salesman problem
Vision
Title Discovering New Robust Local Search Algorithms with Neuro-Evolution
URI https://link.springer.com/article/10.1007/s42979-025-04279-5
https://www.proquest.com/docview/3244987814
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu7DwjSiUygMjFol7TuKxDa0qBB0QlbpFcWIDErSItPx-fMEtomJhjhNLd47vzr73HsBlbpIAtTVcahtxlEJzRZJhOeE6E1mEVhHe-X4cjSZ4O5VTT5NDWJiN-_vryu2XseIkukqqEIrLbWjKsBuTTEMapevzFKLiwkh6XMzfr_7KIjcuPut4MtyHXZ8Ist635w5gy8wOYW8lssD8P3cE6c1LVVCfpfsKc1sSe5jrZbVgdxSE2He3MOu9Ps1dlf_8VjE6WGU15QYffPp1dQyT4eAxHXGvfMDfiQ6HyzDWqixdKYShSiKNRiVxkRM7vJGxITipcLWEC8USTSHC0uYaZSEwdwmRVdg9gcZsPjOnwPKi1JEoI1GoEk0XdWDQxEEsrAy0FUEL2iubZH75VpnLstDNmITYgquVnX4er6mOawtnzsJZbeFMnv1v-DnsCPJP3RzXhsbiY2kuXJBf6A40e8N-f9ypvfwFIOmgJQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgHODCN2IwIAeORLSZ0zbHqWwasO2ANmm3qmkTQIIN0Y3fT9x1Q0xcODdNFduN7cTvGeA6NZGH2houtQ04SqG5opZhKeE6I5n5VhHeuT8IuiN8GMtxRZNDWJi1-_vbwu2XoeLUdJW6QiguN2ELXaZM1hwH8eo8hai4MJAVLubvV39FkWsXn6U_6ezDbhUIstZCcwewYSaHsLdsssCqf-4I4rvXIqM6SzcLc1sSe5rqeTFjPXJCbFEtzFpvz1OX5b-8F4wOVllJucHbX5VdHcOo0x7GXV51PuAfRIfDpR9qlecuFSqXqtGoKMxSYoc3MjQEJxUul3CuWKLJhJ_bVKPMBKYuILIKmydQm0wn5hRYmuU6EHkgMpWjaaL2DJrQC4WVnrbCq0NjKZOkMt8icVEWui9GPtbhZimnn8crquNSwomTcFJKOJFn_xt-BdvdYb-X9O4Hj-ewI0hXZaFcA2qzz7m5cA5_pi9LTX8Dzouhnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgSIgL34jBgBw4Eq3NnLY5Tt2mAWNCiEm7VU2bABJ0E-34_SRdOz7EhXPTRrLT2E783gO4jFXgoNSKcqk9ipxJKqxkWGxxnQFPXC0s3vlu7A0neDPl028o_rLbvb6SXGIaLEtTVrTnqW6vgG9mF_UFtVKsVitCUL4OG6ZScW35FXrh6pTFEnShxyu0zN-v_sgtf12HllFmsAvbVXpIukt_7sGayvZhp5ZeINWfeABh7yVPbPel-QoxGxV5mMlFXpCRDU1k2UNMuq9PM1P7P7_lxB63kpKIg_Y_qtV2CJNB_zEc0koPgc4tSQ7lri9FmpoCCV0ReBKVCPwktpzxivvKgkyZqTBMgOaoEuamOpbIE4axSZO0wM4RNLJZpo6BxEkqPZZ6LBEpqg5KR6HyHZ9p7kjNnCa0aptE1aLOI5N7oZkxcLEJV7Wdvh6vCJBLC0fGwlFp4Yif_G_4BWze9wbR6Hp8ewpbzLqq7J5rQaN4X6gzkwUU8rx09CcAp6nm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+New+Robust+Local+Search+Algorithms+with+Neuro-Evolution&rft.jtitle=SN+computer+science&rft.au=Amri+Sakhri%2C+Mohamed+Salim&rft.au=Go%C3%ABffon%2C+Adrien&rft.au=Goudet%2C+Olivier&rft.au=Saubion%2C+Fr%C3%A9d%C3%A9ric&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=6&rft.issue=7&rft.spage=780&rft_id=info:doi/10.1007%2Fs42979-025-04279-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon