Discovering New Robust Local Search Algorithms with Neuro-Evolution
This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To impr...
Saved in:
Published in | SN computer science Vol. 6; no. 7; p. 780 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems. |
---|---|
AbstractList | This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems. |
Author | Saubion, Frédéric Amri Sakhri, Mohamed Salim Goëffon, Adrien Touhami, Chaïmaâ Goudet, Olivier |
Author_xml | – sequence: 1 givenname: Mohamed Salim surname: Amri Sakhri fullname: Amri Sakhri, Mohamed Salim organization: LERIA, Université d’Angers – sequence: 2 givenname: Adrien surname: Goëffon fullname: Goëffon, Adrien organization: LERIA, Université d’Angers – sequence: 3 givenname: Olivier orcidid: 0000-0001-7040-5052 surname: Goudet fullname: Goudet, Olivier email: olivier.goudet@univ-angers.fr organization: LERIA, Université d’Angers – sequence: 4 givenname: Frédéric surname: Saubion fullname: Saubion, Frédéric organization: LERIA, Université d’Angers – sequence: 5 givenname: Chaïmaâ surname: Touhami fullname: Touhami, Chaïmaâ organization: LERIA, Université d’Angers |
BookMark | eNpFkEtLAzEUhYNUsNb-AVcDrqNJ5ua1LLU-YFDwAe7CPDLtlHFSk5n275tpBVfnLD7O5X6XaNK5ziJ0TcktJUTeBWBaakwYxwRYbPwMTZkQFCtN5OTYGdaaf12geQhbQiJKAASfouV9E0q3t77p1smLPSRvrhhCn2SuzNvk3ea-3CSLdu1802--Q3KIEbnBO7zau3boG9ddofM6b4Od_-UMfT6sPpZPOHt9fF4uMryjVHDMqSx0VWmtgGolCrBayTKHVBHLpRVMCcaoFDTlYEtGqzovgJcMcg681pDO0M1pd-fdz2BDb7Zu8F08aVIGENcUHan0RIXd-JT1_xQlZhRmTsJMtGCOwgxPfwEarV4M |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C JQ2 |
DOI | 10.1007/s42979-025-04279-5 |
DatabaseName | Springer Nature OA Free Journals ProQuest Computer Science Collection |
DatabaseTitle | ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2661-8907 |
ExternalDocumentID | 10_1007_s42979_025_04279_5 |
GrantInformation_xml | – fundername: Université d'Angers – fundername: Agence Nationale de la Recherche grantid: PRC - AAPG 2023 - Axe E.2 - CE23 funderid: http://dx.doi.org/10.13039/501100001665 |
GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BAPOH BSONS C6C DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR JQ2 |
ID | FETCH-LOGICAL-p1165-517b9dd99841986b4e987ca4380e57e6286221761354ec21dfab45c24a545f943 |
IEDL.DBID | C6C |
ISSN | 2662-995X |
IngestDate | Sun Aug 31 02:47:37 EDT 2025 Sat Aug 30 01:19:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Local search Neuro-evolution NK landscapes Black-box optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1165-517b9dd99841986b4e987ca4380e57e6286221761354ec21dfab45c24a545f943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7040-5052 |
OpenAccessLink | https://doi.org/10.1007/s42979-025-04279-5 |
PQID | 3244987814 |
PQPubID | 6623307 |
ParticipantIDs | proquest_journals_3244987814 springer_journals_10_1007_s42979_025_04279_5 |
PublicationCentury | 2000 |
PublicationDate | 20251001 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 20251001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
SSID | ssj0002504465 |
Score | 2.305123 |
Snippet | This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 780 |
SubjectTerms | Algorithms Boolean Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Heuristic Information Systems and Communication Service Machine learning Neighborhoods Neural networks Optimization Original Research Pattern Recognition and Graphics Problem solving Robustness Ruggedness Search algorithms Software Engineering/Programming and Operating Systems Traveling salesman problem Vision |
Title | Discovering New Robust Local Search Algorithms with Neuro-Evolution |
URI | https://link.springer.com/article/10.1007/s42979-025-04279-5 https://www.proquest.com/docview/3244987814 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu7DwjSiUygMjFol7TuKxDa0qBB0QlbpFcWIDErSItPx-fMEtomJhjhNLd47vzr73HsBlbpIAtTVcahtxlEJzRZJhOeE6E1mEVhHe-X4cjSZ4O5VTT5NDWJiN-_vryu2XseIkukqqEIrLbWjKsBuTTEMapevzFKLiwkh6XMzfr_7KIjcuPut4MtyHXZ8Ist635w5gy8wOYW8lssD8P3cE6c1LVVCfpfsKc1sSe5jrZbVgdxSE2He3MOu9Ps1dlf_8VjE6WGU15QYffPp1dQyT4eAxHXGvfMDfiQ6HyzDWqixdKYShSiKNRiVxkRM7vJGxITipcLWEC8USTSHC0uYaZSEwdwmRVdg9gcZsPjOnwPKi1JEoI1GoEk0XdWDQxEEsrAy0FUEL2iubZH75VpnLstDNmITYgquVnX4er6mOawtnzsJZbeFMnv1v-DnsCPJP3RzXhsbiY2kuXJBf6A40e8N-f9ypvfwFIOmgJQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgHODCN2IwIAeORLSZ0zbHqWwasO2ANmm3qmkTQIIN0Y3fT9x1Q0xcODdNFduN7cTvGeA6NZGH2houtQ04SqG5opZhKeE6I5n5VhHeuT8IuiN8GMtxRZNDWJi1-_vbwu2XoeLUdJW6QiguN2ELXaZM1hwH8eo8hai4MJAVLubvV39FkWsXn6U_6ezDbhUIstZCcwewYSaHsLdsssCqf-4I4rvXIqM6SzcLc1sSe5rqeTFjPXJCbFEtzFpvz1OX5b-8F4wOVllJucHbX5VdHcOo0x7GXV51PuAfRIfDpR9qlecuFSqXqtGoKMxSYoc3MjQEJxUul3CuWKLJhJ_bVKPMBKYuILIKmydQm0wn5hRYmuU6EHkgMpWjaaL2DJrQC4WVnrbCq0NjKZOkMt8icVEWui9GPtbhZimnn8crquNSwomTcFJKOJFn_xt-BdvdYb-X9O4Hj-ewI0hXZaFcA2qzz7m5cA5_pi9LTX8Dzouhnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgSIgL34jBgBw4Eq3NnLY5Tt2mAWNCiEm7VU2bABJ0E-34_SRdOz7EhXPTRrLT2E783gO4jFXgoNSKcqk9ipxJKqxkWGxxnQFPXC0s3vlu7A0neDPl028o_rLbvb6SXGIaLEtTVrTnqW6vgG9mF_UFtVKsVitCUL4OG6ZScW35FXrh6pTFEnShxyu0zN-v_sgtf12HllFmsAvbVXpIukt_7sGayvZhp5ZeINWfeABh7yVPbPel-QoxGxV5mMlFXpCRDU1k2UNMuq9PM1P7P7_lxB63kpKIg_Y_qtV2CJNB_zEc0koPgc4tSQ7lri9FmpoCCV0ReBKVCPwktpzxivvKgkyZqTBMgOaoEuamOpbIE4axSZO0wM4RNLJZpo6BxEkqPZZ6LBEpqg5KR6HyHZ9p7kjNnCa0aptE1aLOI5N7oZkxcLEJV7Wdvh6vCJBLC0fGwlFp4Yif_G_4BWze9wbR6Hp8ewpbzLqq7J5rQaN4X6gzkwUU8rx09CcAp6nm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+New+Robust+Local+Search+Algorithms+with+Neuro-Evolution&rft.jtitle=SN+computer+science&rft.au=Amri+Sakhri%2C+Mohamed+Salim&rft.au=Go%C3%ABffon%2C+Adrien&rft.au=Goudet%2C+Olivier&rft.au=Saubion%2C+Fr%C3%A9d%C3%A9ric&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=6&rft.issue=7&rft.spage=780&rft_id=info:doi/10.1007%2Fs42979-025-04279-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |