Fusion of Nonlinear Elasticity with Galilean Electromagnetism
Herein we take a first step towards merging nonlinear elasticity with the two non-relativistic Galilean-covariant limits of electromagnetism, namely the electric limit and the magnetic limit, the results of which we call Galilean electroelasticity and Galilean magnetoelasticity, respectively. Using...
Saved in:
Published in | Journal of elasticity Vol. 157; no. 2 |
---|---|
Format | Journal Article |
Language | English |
Published |
Groningen
Springer Nature B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-025-10124-w |
Cover
Loading…
Abstract | Herein we take a first step towards merging nonlinear elasticity with the two non-relativistic Galilean-covariant limits of electromagnetism, namely the electric limit and the magnetic limit, the results of which we call Galilean electroelasticity and Galilean magnetoelasticity, respectively. Using the first law of thermodynamics for dynamical adiabatic processes, we derive, for systems (with zero free-charge and free-current densities) which undergo such processes, the internal energy density function and its associated constitutive equations in Galilean electroelasticity and magnetoelasticity, respectively. Each of the two internal energy density functions (per unit reference volume) thus obtained agrees with one of the two total energy density functions introduced by Dorfmann and Ogden in their work on electro-elastostatics and magneto-elastostatics, respectively. For linear polarizable and magnetizable dielectrics, Galilean-invariant expressions of the Maxwell stress are obtained for the electric limit and for the magnetic limit, respectively. |
---|---|
AbstractList | Herein we take a first step towards merging nonlinear elasticity with the two non-relativistic Galilean-covariant limits of electromagnetism, namely the electric limit and the magnetic limit, the results of which we call Galilean electroelasticity and Galilean magnetoelasticity, respectively. Using the first law of thermodynamics for dynamical adiabatic processes, we derive, for systems (with zero free-charge and free-current densities) which undergo such processes, the internal energy density function and its associated constitutive equations in Galilean electroelasticity and magnetoelasticity, respectively. Each of the two internal energy density functions (per unit reference volume) thus obtained agrees with one of the two total energy density functions introduced by Dorfmann and Ogden in their work on electro-elastostatics and magneto-elastostatics, respectively. For linear polarizable and magnetizable dielectrics, Galilean-invariant expressions of the Maxwell stress are obtained for the electric limit and for the magnetic limit, respectively. |
BookMark | eNotjs1KAzEURoNUcFp9AVcDrqM3ufmZLFxIaatQdKPrkqaJpkyTOslQfHsLuvoWB875pmSScvKE3DK4ZwD6oTBQ0lDgkjJgXNDTBWmY1Ei56tiENIBaUJQor8i0lD0AmE5AQx6XY4k5tTm0rzn1MXk7tIvelhpdrD_tKdavdmX72HubzsC7OuSD_Uy-xnK4JpfB9sXf_O-MfCwX7_Nnun5bvcyf1vTIGFbaoT8_AwVbbsEC7mQHGIBzhk4L77TVVhhrpBOy42GHShlntlYGBsE7gTNy9-c9Dvl79KVu9nkc0jm5Qaa5FAJA4S9iREw_ |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10659-025-10124-w |
DatabaseName | Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-2681 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7SR 7TB 8BQ 8FD 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FR3 FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JG9 JZLTJ KDC KOV KR7 LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~EX |
ID | FETCH-LOGICAL-p113t-83e025060b2a0a03d5803f02213c74ec7a7a49a95c4582fd3669c9ba5f10fec43 |
ISSN | 0374-3535 |
IngestDate | Tue Jul 22 22:52:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p113t-83e025060b2a0a03d5803f02213c74ec7a7a49a95c4582fd3669c9ba5f10fec43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3172544006 |
PQPubID | 326256 |
ParticipantIDs | proquest_journals_3172544006 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Groningen |
PublicationPlace_xml | – name: Groningen |
PublicationTitle | Journal of elasticity |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
SSID | ssj0009840 |
Score | 2.3865416 |
Snippet | Herein we take a first step towards merging nonlinear elasticity with the two non-relativistic Galilean-covariant limits of electromagnetism, namely the... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Constitutive equations Constitutive relationships Density functions Elasticity Elastostatics Electromagnetism Energy conservation law Internal energy Thermodynamics |
Title | Fusion of Nonlinear Elasticity with Galilean Electromagnetism |
URI | https://www.proquest.com/docview/3172544006 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG50XvTgj6nxxzQ9eDNdgJYCx8UwjZnzsiW7LaW0XnQzG4uJf72vUGBui1EvDSkBmn7t68d7_V4Rugl0lIhAeIQBuSYsUopEjEmSaCVECAsmz505T33-MGSPI39Un4KQq0uypC0_N-pK_oMq1AGuRiX7B2Srl0IFXAO-UALCUP4K4-5ibvlev8h4IWa3MdBhs1MayHXuY70Hov1q3O1xceDNm3iZqKxMHLhOS1X1_LJDAHq42n73zSFodjubGEQlWClEUgEj1C8yhLSVtXkBJR4vTk6pjGKRNtqi7200tk4pPuZ-RExDTK4wRj7qpaUMp_efx91hrzcexKPBNtrxgiAPqQ-9Tp0gOczFq1UDrcDJyhxXvrC2cOZsYHCI9m1_4U6ByRHaUpMmOrCUHluDOW-ivaV8j8fIAoanGleA4RowbADDJWB4FbATNOzGg7sHYs-vIO-uSzMSUmUYJncSTzjCoakfOlQDaXKpDJiSAUwSFonIlyZ4qVPKeSRh6vjadbSSjJ6ixmQ6UWcIUyW0K2SqXCeFH2oXjKXmOuVSaSelYXqOWmWHjO0AnY-BGpoEdGBXL36-fYl264HUQo1stlBXwLWy5DoH6QuPxyq0 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Nonlinear+Elasticity+with+Galilean+Electromagnetism&rft.jtitle=Journal+of+elasticity&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=2&rft_id=info:doi/10.1007%2Fs10659-025-10124-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |