A Simple Mathematical Model and Practical Approach for Evaluating Citric Acid Cycle Fluxes in Perfused Rat Hearts by 13C‐NMR and 1H‐NMR Spectroscopy
We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C‐NMR and 1H‐NMR spectroscopy. We demonstrate that 13C‐NMR glutamate spectra are independent of the relative sizes of the m...
Saved in:
Published in | European journal of biochemistry Vol. 245; no. 2; pp. 497 - 504 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
15.04.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C‐NMR and 1H‐NMR spectroscopy. We demonstrate that 13C‐NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments.
Wistar rat hearts (five beating and four KCl‐arrested hearts) were aerobically perfused with 100% enriched [2‐13C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 ± 0.003 min−1 for beating hearts and 0.074 ± 0.004 min−1 for KCl‐arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl‐arrested hearts are 1.06 ± 0.06 μmol · min−1· mg−1 and 0.21 ± 0.02 μmol · min−1· g−1, respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 ± 1.7% and 8.8 ± 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2‐oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half‐time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species. |
---|---|
AbstractList | We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C‐NMR and 1H‐NMR spectroscopy. We demonstrate that 13C‐NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments.
Wistar rat hearts (five beating and four KCl‐arrested hearts) were aerobically perfused with 100% enriched [2‐13C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 ± 0.003 min−1 for beating hearts and 0.074 ± 0.004 min−1 for KCl‐arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl‐arrested hearts are 1.06 ± 0.06 μmol · min−1· mg−1 and 0.21 ± 0.02 μmol · min−1· g−1, respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 ± 1.7% and 8.8 ± 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2‐oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half‐time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species. We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C-NMR and 1H-NMR spectroscopy. We demonstrate that 13C-NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments. Wistar rat hearts (five beating and four KCl-arrested hearts) were aerobically perfused with 100% enriched [2-(13)C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 +/- 0.003 min(-1) for beating hearts and 0.0741 +/- 0.004 min(-1) for KCl-arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl-arrested hearts are 1.06 +/- 0.06 micromol x min(-1) x mg(-1) and 0.21 +/- 0.02 micromol x min(-1) x g(-1), respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 +/- 1.7% and 8.8 +/- 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2-oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half-time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species. |
Author | Hoerter, J. A. Mateo, P. Herve, M. Bouet, F. Tran‐Dinh, S. |
Author_xml | – sequence: 1 givenname: S. surname: Tran‐Dinh fullname: Tran‐Dinh, S. – sequence: 2 givenname: J. A. surname: Hoerter fullname: Hoerter, J. A. – sequence: 3 givenname: P. surname: Mateo fullname: Mateo, P. – sequence: 4 givenname: F. surname: Bouet fullname: Bouet, F. – sequence: 5 givenname: M. surname: Herve fullname: Herve, M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9151985$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc1uGyEURlGVKnWSPkIlVtmNCwMzmKU7suNKcRrF6RphuNNgMT8dZhLPro_QZZ-vTxIcW2HDhfPpXsG5QGd1UwNC15RMaVxfd1PKWZpQwtiUSimmPaFJmhDCY73_gCbv-AxNCKE8SWWWf0IXIewIIbnMxTk6lzSjcpZN0L853riq9YDXun-CSvfOaI_XjQWPdW3xfafN8W7etl2jzRMumw4vnrUfYrj-hQvXd87guXEWF6OJrZZ-2EPArsb30JVDAIsfdI9XoLs-4O2IKSv-__l7t354G0FXp8OmBdN3TTBNO16hj6X2AT6f9kv0c7l4LFbJ7Y-b78X8NmkpZSLZCqKpIBwAOGUg7JanhpdMEjvLS2k40VLwjM0ktzaTMucQgUmzmRFQas4u0fWxb3zc7wFCryoXDHiva2iGoIQkRFJGYvDLKThsK7Cq7Vylu1GdvjLy4shfnIfxHVOiDt7UTh3EqIMYdfCmojeVqjdvaq-Wi2-bWLFXX7aQCg |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.1432-1033.1997.t01-2-00497.x |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1432-1033 |
EndPage | 504 |
ExternalDocumentID | 9151985 FEBS497 |
Genre | article Journal Article |
GroupedDBID | -DZ -~X .55 .GA .GJ .Y3 10A 1OC 24P 29G 31~ 36B 3O- 4.4 51W 51X 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5RE 66C 7PT 8-1 8-4 8-5 930 A01 A03 AAEVG AAHHS AAZKR ABDBF ABEFU ABJNI ACCFJ ACFBH ACGFS ACMXC ACNCT ACXQS ADBBV ADIZJ ADZOD AEEZP AEIMD AEQDE AETEA AEUQT AFBPY AFPWT AFZJQ AI. AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR BAWUL BY8 C45 CAG CO8 COF CS3 D-7 D-F DIK E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P G-S G8K GODZA GX1 HZI IH2 IHE IPNFZ L7B LH4 LP6 LP7 LW6 MVM O9- OBS OHT OVD P4B P4D QB0 RIG ROL SDH SUPJJ SV3 TEORI TR2 TUS UB1 VH1 WH7 WOW WQJ WRC WXI X7M XG1 Y6R YFH YSK YUY ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-p1137-b70a1704eee413e7db42c4f390d86f9c40a97453894dd59964ed86c258c7efa43 |
IEDL.DBID | 24P |
ISSN | 0014-2956 |
IngestDate | Fri Oct 25 00:07:48 EDT 2024 Sat Sep 28 08:36:58 EDT 2024 Sat Aug 24 00:56:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1137-b70a1704eee413e7db42c4f390d86f9c40a97453894dd59964ed86c258c7efa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 9151985 |
PQID | 79009130 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_79009130 pubmed_primary_9151985 wiley_primary_10_1111_j_1432_1033_1997_t01_2_00497_x_FEBS497 |
PublicationCentury | 1900 |
PublicationDate | 1997-Apr-15 |
PublicationDateYYYYMMDD | 1997-04-15 |
PublicationDate_xml | – month: 04 year: 1997 text: 1997-Apr-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | European journal of biochemistry |
PublicationTitleAlternate | Eur J Biochem |
PublicationYear | 1997 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 1991; 197 1983; 258 1989; 1 1995; 15 1994 1988; 263 1996; 242 1992; 31 1993; 268 1996; 35 1992; 12 1995; 270 1992; 30 1992; 74 1994; 266 1992; 70 1991; 201 1993; 218 1990; 29 1995; 69 1993; 32 1993; 30 1983; 80 1995; 266 1982; 257 1988; 20 1992; 89 1996; 239 1981; 78 |
References_xml | – volume: 201 start-page: 715 year: 1991 end-page: 721 publication-title: Eur. J. Biochem. – volume: 29 start-page: 6756 year: 1990 end-page: 6761 publication-title: Biochemistry – volume: 268 start-page: 25509 year: 1993 end-page: 25521 publication-title: J. Biol. Chem. – volume: 270 start-page: 13147 year: 1995 end-page: 13159 publication-title: J. Biol. Chem. – volume: 218 start-page: 221 year: 1993 end-page: 228 publication-title: Eur. J. Biochem. – volume: 197 start-page: 271 year: 1991 end-page: 279 publication-title: Eur. J. Biochem. – volume: 78 start-page: 2693 year: 1981 end-page: 2697 publication-title: Proc. Natl Acad. Sci. USA – volume: 1 start-page: 171 year: 1989 end-page: 176 publication-title: NMR Biomed. – volume: 80 start-page: 5847 year: 1983 end-page: 5851 publication-title: Proc. Natl Acad. Sci. USA – volume: 242 start-page: 220 year: 1996 end-page: 227 publication-title: Eur. J. Biochem. – volume: 35 start-page: 6963 year: 1996 end-page: 6968 publication-title: Biochemistry – volume: 69 start-page: 2090 year: 1995 end-page: 2102 publication-title: Biophys. J. – volume: 266 start-page: E341 year: 1994 end-page: E350 publication-title: Am. J. Physiol. – volume: 242 start-page: 770 year: 1996 end-page: 778 publication-title: Eur. J. Biochem. – start-page: 439 year: 1994 end-page: 449 – volume: 270 start-page: 7999 year: 1995 end-page: 8008 publication-title: J. Biol. Chem. – volume: 258 start-page: 13785 year: 1983 end-page: 13794 publication-title: J. Biol. Chem. – volume: 70 start-page: 392 year: 1992 end-page: 408 publication-title: Circ. Res. – volume: 270 start-page: 10027 year: 1995 end-page: 10036 publication-title: J. Biol. Chem. – volume: 15 start-page: 12 year: 1995 end-page: 25 publication-title: J. Cereb. Blood Flow Metab. – volume: 74 start-page: 1103 year: 1992 end-page: 1115 publication-title: Biochimie (Paris) – volume: 31 start-page: 8916 year: 1992 end-page: 8923 publication-title: Biochemistry – volume: 70 start-page: 576 year: 1992 end-page: 582 publication-title: Circ. Res. – volume: 89 start-page: 9603 year: 1992 end-page: 9606 publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 434 year: 1992 end-page: 455 publication-title: J. Cereb. Blood Flow Metab. – volume: 263 start-page: 6964 year: 1988 end-page: 6971 publication-title: J. Biol. Chem. – volume: 30 start-page: 262 year: 1993 end-page: 263 publication-title: Magn. Reson. Med. – volume: 266 start-page: E397 year: 1995 end-page: E409 publication-title: Am. J. Physiol. – volume: 30 start-page: 347 year: 1992 end-page: 358 publication-title: Magn. Reson. Chem. – volume: 32 start-page: 12240 year: 1993 end-page: 12255 publication-title: Biochemistry – volume: 239 start-page: 742 year: 1996 end-page: 751 publication-title: Eur. J. Biochem. – volume: 257 start-page: 1189 year: 1982 end-page: 1195 publication-title: J. Biol. Chem. – volume: 20 start-page: 337 year: 1988 end-page: 383 publication-title: Prog. NMR Spectrosc. |
SSID | ssj0006967 |
Score | 1.4128448 |
Snippet | We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in... |
SourceID | proquest pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 497 |
SubjectTerms | 13C‐NMR acetate metabolism Acetic Acid - metabolism Animals Carbon Isotopes Cell Compartmentation citric acid cycle Citric Acid Cycle - physiology Glutamic Acid Heart - physiology Hydrogen Magnetic Resonance Spectroscopy Male metabolic flux Models, Biological Perfusion rat heart Rats Rats, Wistar |
Title | A Simple Mathematical Model and Practical Approach for Evaluating Citric Acid Cycle Fluxes in Perfused Rat Hearts by 13C‐NMR and 1H‐NMR Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1432-1033.1997.t01-2-00497.x https://www.ncbi.nlm.nih.gov/pubmed/9151985 https://search.proquest.com/docview/79009130 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhgbaX0iYNTdO0cyi5KdiW_CPoxTG7LIUNS7aB3IT-XBZSZ4m9kL31EXLs8_VJOpK9S1JKL71ZMhqBxjP6RtZ8Q8inTEeFtbmhIik0BijWUmVTQ-uiFqqulRHaJydPL7LJFf9ynV7vkNkmF6bnh9geuHnLCP7aG7jS7R9GzhJ0I4z5lLv8rMPAOKEe8uZniCr3PI2MZ9NP-GzrmzOR9SyaMacJhgbPyOmjuz3_kPc3APoUz4YNafyKvByQJJS96l-THdfsk4OywSj6-xpOIdztDIfm--R5tanrdkB-ljBfeE5gmG4pW1GOL4p2A6qx0FMY-b5yIBwHRLYwGnjBm29QLTyvP5RmYaFa4-wwvlnduxYWDczcXb1qnYVL1cEE7ahrQa8hZtWvHw8X08swRTwZGvNlqMLjc2PWb8jVePS1mtChPgNdxjHLqc4jFecRd87hVuhyq3lieM1EZIusFoZHCqMV9KiCW-tpYLjDFyZJC5O7WnF2SHab28a9JWAM5yxy2tbWJ7mLwsTOYBvla6az9Ih83Cy_xOXyPzVU425XrcxF5KlNoyNy2GtFLnuaDikQzIgCh34OWtr2Pw57WCK9wqVXuESFy0QGhct7OR6dz_Hp3f8NPyYvesJbTuP0Pdnt7lbuBGFMpz-EL_M3VRfoOw |
link.rule.ids | 315,783,787,11574,27936,27937,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhgaaX0CYNTdI2cyi5KdiW_CPIxTW7uG12SbMJ5CasH5eF1FmyXsje-gg95vn6JB3J3iUtpZfeLBlJoNGMvpE03xDyPlFBZkyqqYgyhQ6KMbQysaZ1VouqristlAtOHo2T8pp_uolvNsiXVSxMxw-xPnBzmuHttVNwdyD9h5azCO0IYy7mLj1t0TOOqMO86SnCyi2e4Op0ZM_8Ym2cE5F0NJohpxH6Bs_IyZPHPf_o728I9HdA63ek4Quy00NJyDvZvyQbttkle3mDbvS3JZyAf9zpT813yXaxSuy2Rx5zmEwdKTCM1pyt2I_LinYLVWOg4zBydXnPOA4IbWHQE4M3X6GYOmJ_yPXUQLHE0WF4u3iwc5g2cGHv68XcGrisWihRkdo5qCWErPj5_cd4dOmHCMu-MJn5NDwuOGb5ilwPB1dFSfsEDXQWhiylKg2qMA24tRb3QpsaxSPNayYCkyW10Dyo0F1Bkyq4MY4Hhlv8oaM406mtK872yWZz19jXBLTmnAVWmdq4KHeR6dBqLGP_iqkkPiDHq-mXOF3uVqNq7N1iLlMROG7T4IDsd1KRs46nQwpEMyLDpmdeSuv6p34Pi6QTuHQClyhwGUkvcPkgh4MPE_w6_L_mx2S7vBqdy_OP489H5HnHfstpGL8hm-39wr5FTNOqd36V_gIBFeuv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhgbSX0CYNTdI2cyi5OdiWbFmQi-uu2f7ssmQbyE1Yf2UhdZasF7K3PkKPeb4-SUe2d0lL6aU3S0Yj0HhG38iabwh5m6owM4brQMSZwgDFmKAyiQ5c5kTlXKWF8snJo3E6vGIfr5PrLTJZ58J0_BCbAzdvGa2_9gY-N-4PI6cxuhFKfcodP28wMI4DD3n5OaLKHYbY3LPpx2yy8c2pSDsWzYgFMYYGu-Ts0d2ef8j7GwD9Hc-2G1L5jOz1SBLyTvXPyZat98lBXmMU_W0FZ9De7WwPzffJk2Jd1-2APOQwnXlOYBhtKFtRji-KdgNVbaCjMPJ9eU84DohsYdDzgtdfoZh5Xn_I9cxAscLZobxZ3tsFzGqY2Du3XFgDl1UDQ7SjZgFqBREtfn7_MR5dtlNEw74xnbdVeHxuzOoFuSoHX4ph0NdnCOZRRHmgeFhFPGTWWtwKLTeKxZo5KkKTpU5oFlYYraBHFcwYTwPDLL7QcZJpbl3F6CHZrm9r-5KA1ozR0CrjjE9yF5mOrMY2yldUpckROV0vv8Tl8j81qtreLheSi9BTm4ZH5LDTipx3NB1SIJgRGQ69aLW06X8c9tBYeoVLr3CJCpexbBUu72U5eDfFp-P_G35KdifvS_n5w_jTCXnacd-yIEpeke3mbmlfI6Jp1Jv2I_0FemXqzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Mathematical+Model+and+Practical+Approach+for+Evaluating+Citric+Acid+Cycle+Fluxes+in+Perfused+Rat+Hearts+by+13C%E2%80%90NMR+and+1H%E2%80%90NMR+Spectroscopy&rft.jtitle=European+journal+of+biochemistry&rft.au=Tran%E2%80%90Dinh%2C+S.&rft.au=Hoerter%2C+J.+A.&rft.au=Mateo%2C+P.&rft.au=Bouet%2C+F.&rft.date=1997-04-15&rft.pub=Blackwell+Science+Ltd&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=245&rft.issue=2&rft.spage=497&rft.epage=504&rft_id=info:doi/10.1111%2Fj.1432-1033.1997.t01-2-00497.x&rft.externalDBID=10.1111%252Fj.1432-1033.1997.t01-2-00497.x&rft.externalDocID=FEBS497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon |