Multi-frame super-resolution with quality self-assessment for retinal fundus videos

This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In orde...

Full description

Saved in:
Bibliographic Details
Published inMedical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention Vol. 17; no. Pt 1; p. 650
Main Authors Köhler, Thomas, Brost, Alexander, Mogalle, Katja, Zhang, Qianyi, Köhler, Christiane, Michelson, Georg, Hornegger, Joachim, Tornow, Ralf P
Format Journal Article
LanguageEnglish
Published Germany 2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.
AbstractList This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.
Author Köhler, Christiane
Hornegger, Joachim
Brost, Alexander
Zhang, Qianyi
Michelson, Georg
Mogalle, Katja
Tornow, Ralf P
Köhler, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Köhler
  fullname: Köhler, Thomas
– sequence: 2
  givenname: Alexander
  surname: Brost
  fullname: Brost, Alexander
– sequence: 3
  givenname: Katja
  surname: Mogalle
  fullname: Mogalle, Katja
– sequence: 4
  givenname: Qianyi
  surname: Zhang
  fullname: Zhang, Qianyi
– sequence: 5
  givenname: Christiane
  surname: Köhler
  fullname: Köhler, Christiane
– sequence: 6
  givenname: Georg
  surname: Michelson
  fullname: Michelson, Georg
– sequence: 7
  givenname: Joachim
  surname: Hornegger
  fullname: Hornegger, Joachim
– sequence: 8
  givenname: Ralf P
  surname: Tornow
  fullname: Tornow, Ralf P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25333174$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lKBDEURbNQHFp_QfIDgQydStVSGidocaGumwwvGEglZQal_94CdXU291w4l-gk5QRn6JxLIQRT2wv0-txjC8QXPQOufYFCCtQcews54e_QPvBn1zG0I64QPdG1Qq0zpIZ9LrhAC0lH7HtyveKv4CDXK3Tqdaxw_ccNer-_e9s9kv3Lw9Pudk8WRsdGuGfSSKn4KKZhskwxJqRaIYz3hg6Ujk7SrR0HofTEzLq1VDmY2GpYC3yDbn5_l25mcIelhFmX4-G_jv8AUXJIUw
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 25333174
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-p108t-2f15b557283969c17113571713bffb06008d504c8637a91bb55c07de91283cce2
IngestDate Fri Sep 17 19:43:16 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p108t-2f15b557283969c17113571713bffb06008d504c8637a91bb55c07de91283cce2
PMID 25333174
ParticipantIDs pubmed_primary_25333174
PublicationCentury 2000
PublicationDate 2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014-00-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
PublicationTitleAlternate Med Image Comput Comput Assist Interv
PublicationYear 2014
Score 1.9433429
Snippet This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus...
SourceID pubmed
SourceType Index Database
StartPage 650
SubjectTerms Algorithms
Feedback
Fundus Oculi
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Retinal Vessels - anatomy & histology
Retinoscopy - methods
Sensitivity and Specificity
Subtraction Technique
Video Recording - methods
Title Multi-frame super-resolution with quality self-assessment for retinal fundus videos
URI https://www.ncbi.nlm.nih.gov/pubmed/25333174
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rXryI4vtFDt5KlqZN2-1xXZRdQVlRwZs0aQqK7i7u7kF_or_KmaapsSg-LqUkpQOZr803k3kQcuSngUrQUSVFEjIhwpzJNJasAJNZpb7IuI_JyecXcf9GnN1Gt63WmxO1NJ_Jtnr9Mq_kP1qFMdArZsn-QbP1S2EA7kG_cAUNw_VXOi6zZ1mB8VXedD7RzwyM50qi8bCanMkXb6ofC5bVVTjL4ELMX0QuCltbPp96mJA3nrpk1R7i3D9hYI8q-z_YnEZVdYPAlyJS8rLwRB09iY4GUHCvO_Da7XbD7_iRZYhHFVbKoJTS-yTF9pxgXStl4EipNws87T-ObR9nJ-bJ-BlMWkudylNjbIxRB7qKKXmo96fah34Jn87LvesX4cLxi9gfe-IAeDjzuPOjjk25Wwckk6cSJQHwX-BU4ufZRp1uO7VAFsBiwRasw3MsNV0NN8yWkr5cr5KVyu6gXQOiNdLSo3Vy5QCINgFEEUC0AhBtAIgCgGgFIGoARA2ANsjN6cl1r8-qLhtswv3OjAUFj2QUJcAz0zhVPOE8jMDI56EsCukDIe7kkS9UJw6TLOUSnlV-kusUmE2olA42yeJoPNLbhALX9XkG24IOpCiCUHIB_F8GGZD6EEyTHbJl1uBuYkqp3NnV2f12Zo8sf2h3nywV8O3qAyCCM3lYrvE79OBqig
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-frame+super-resolution+with+quality+self-assessment+for+retinal+fundus+videos&rft.jtitle=Medical+image+computing+and+computer-assisted+intervention+%3A+MICCAI+...+International+Conference+on+Medical+Image+Computing+and+Computer-Assisted+Intervention&rft.au=K%C3%B6hler%2C+Thomas&rft.au=Brost%2C+Alexander&rft.au=Mogalle%2C+Katja&rft.au=Zhang%2C+Qianyi&rft.date=2014-01-01&rft.volume=17&rft.issue=Pt+1&rft.spage=650&rft_id=info%3Apmid%2F25333174&rft_id=info%3Apmid%2F25333174&rft.externalDocID=25333174