Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function A+BXB
The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentia...
Saved in:
Published in | Mathematical and computer modelling Vol. 55; no. 3-4 p.955-968; pp. 955 - 968 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentiable nor smooth. In this case, maximizing and minimizing the inertia and rank of a Hermitian matrix function could be regarded as a continuous-integer optimization problem. In this paper, we use some pure algebraic operations of matrices and their generalized inverses to derive explicit expansion formulas for calculating the global maximum and minimum ranks and inertias of the linear Hermitian matrix function A+BXB∗ subject to some rank and definiteness restrictions on the variable matrix X. Various direct consequences of the formulas in characterizing algebraic properties of A+BXB∗ are also presented. In particular, solutions to a group of constrained optimization problems on the rank and inertia of a partially specified block Hermitian matrix are given. |
---|---|
AbstractList | The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentiable nor smooth. In this case, maximizing and minimizing the inertia and rank of a Hermitian matrix function could be regarded as a continuous-integer optimization problem. In this paper, we use some pure algebraic operations of matrices and their generalized inverses to derive explicit expansion formulas for calculating the global maximum and minimum ranks and inertias of the linear Hermitian matrix function A+BXB∗ subject to some rank and definiteness restrictions on the variable matrix X. Various direct consequences of the formulas in characterizing algebraic properties of A+BXB∗ are also presented. In particular, solutions to a group of constrained optimization problems on the rank and inertia of a partially specified block Hermitian matrix are given. |
Author | Tian, Yongge |
Author_xml | – sequence: 1 givenname: Yongge surname: Tian fullname: Tian, Yongge |
BookMark | eNotjkFLAzEQhXOoYFv9Ad5yFGTXmaTZTY5t0SoUPKjgraS7CaZukrrJgvjrXaun9958M8ObkUmIwRByhVAiYHV7KH3jSwaIJagSGJuQKUglihrr-pzMUjoAgFAgp8Q_x27ILoZEc6QoaTPa3GsXTEvjMTvvvvUvp8c-7jvjEx19fje01-GD6tDScbXPTtNoT_NuzLqnXufefVE7hOZ0vrxZva0uyJnVXTKX_zonr_d3L-uHYvu0eVwvt8URgefCqj0TLWuFrCqDWoLi2Jq2rqwSC1lrwfUIheEWUAGDBVgQwDlDDY2yyOfk-u_vWPpzMCnvvEuN6TodTBzSDmvOBTKJFf8BI_pdDw |
ContentType | Journal Article |
DBID | 7S9 L.6 |
DOI | 10.1016/j.mcm.2011.09.022 |
DatabaseName | AGRICOLA AGRICOLA - Academic |
DatabaseTitle | AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EndPage | 968 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 186 1B1 1RT 1~. 1~5 4.4 4G. 5GY 5VS 7-5 71M 7S9 8P~ 9JN 9JO AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AEUPX AEXQZ AFPUW AFTJW AFXIZ AGCQF AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM L.6 LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SSB SSD SSH SST SSW SSZ T5K TN5 XPP XSW YNT YQT ZMT |
ID | FETCH-LOGICAL-p103t-f9b25d2d5866e1a80931ded76f95487a53a2d55e3f01902040f0503321a0c9f13 |
ISSN | 0895-7177 |
IngestDate | Fri Jul 11 02:39:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 p.955-968 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p103t-f9b25d2d5866e1a80931ded76f95487a53a2d55e3f01902040f0503321a0c9f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1733512816 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1733512816 |
PublicationCentury | 2000 |
PublicationDate | 20120201 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 20120201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Mathematical and computer modelling |
PublicationYear | 2012 |
SSID | ssj0005908 |
Score | 2.0236042 |
Snippet | The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 955 |
SubjectTerms | computer techniques decision making mathematical models system optimization |
Title | Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function A+BXB |
URI | https://www.proquest.com/docview/1733512816 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXOBQ8SmggIwEp8hRHK-T-LiLWlWoLZddaTmtnMRGQiSpuqlU9dDf3hnbyQbKoXCJsk42u8pLZsaemfcI-ZQJbWtbKXjTkorNKsNZKaucaYC4sDwvEoWNwqdn2fFq9nUt1zsVR9dd0pdxdf3XvpL_QRXGAFfskv0HZMeLwgDsA76wBYRhey-MxzUtjCB5gSXkW6f5AFFkB7agCU2WUZCNGVIDESq1B94lrKvWQ6UAxpz6ImqQt_8qQp_nvj7_nC4W68U0kD0d6V4D2UAV5CG8ts6vwSO6Cl-_yPq9a3-EyqOwzID1GmPJRrBGSjKY--VT0-kZdsMjItgsOo-VlEx5pZxgE1U4y7vXcOyO5faLCD_jpmoCsaqKE9-y_DtL9tm3zdHq5GSzPFwvH5JHKUwPULkivpmU9iinRDj-5SGb7er6_viBOz7YBRbLp2Q_zAjo3MP7jDww7XPyZMITCZ92d3v7gjQj7LTvKC_oBHY6hZ0OsFPYhwtQhJ0CWDTATjvrxj3s1MNOB9jpPALQX5LV0eHyyzELqhnsnCeiZ1aVqazTWhZZZriGl03w2tR5ZpHbL9dSaDgojbBII5CCEbfICSRSrpNKWS5ekb22a81rQnWZJlkC3hyDTivyMhcG0-hZrSoJofkb8nG4dxuwSphq0q3pLrcbngshMUmbvb3HOQfk8e6Re0f2-otL8x5ivb784IC9BUB_Vm0 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+to+18+constrained+optimization+problems+on+the+rank+and+inertia+of+the+linear+matrix+function+A%2BBXB&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Tian%2C+Yongge&rft.date=2012-02-01&rft.issn=0895-7177&rft.volume=55&rft.issue=3-4+p.955-968&rft.spage=955&rft.epage=968&rft_id=info:doi/10.1016%2Fj.mcm.2011.09.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon |