Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function A+BXB

The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentia...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling Vol. 55; no. 3-4 p.955-968; pp. 955 - 968
Main Author Tian, Yongge
Format Journal Article
LanguageEnglish
Published 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentiable nor smooth. In this case, maximizing and minimizing the inertia and rank of a Hermitian matrix function could be regarded as a continuous-integer optimization problem. In this paper, we use some pure algebraic operations of matrices and their generalized inverses to derive explicit expansion formulas for calculating the global maximum and minimum ranks and inertias of the linear Hermitian matrix function A+BXB∗ subject to some rank and definiteness restrictions on the variable matrix X. Various direct consequences of the formulas in characterizing algebraic properties of A+BXB∗ are also presented. In particular, solutions to a group of constrained optimization problems on the rank and inertia of a partially specified block Hermitian matrix are given.
AbstractList The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. If we take the inertia and rank of a Hermitian matrix as objective functions, then they are neither differentiable nor smooth. In this case, maximizing and minimizing the inertia and rank of a Hermitian matrix function could be regarded as a continuous-integer optimization problem. In this paper, we use some pure algebraic operations of matrices and their generalized inverses to derive explicit expansion formulas for calculating the global maximum and minimum ranks and inertias of the linear Hermitian matrix function A+BXB∗ subject to some rank and definiteness restrictions on the variable matrix X. Various direct consequences of the formulas in characterizing algebraic properties of A+BXB∗ are also presented. In particular, solutions to a group of constrained optimization problems on the rank and inertia of a partially specified block Hermitian matrix are given.
Author Tian, Yongge
Author_xml – sequence: 1
  givenname: Yongge
  surname: Tian
  fullname: Tian, Yongge
BookMark eNotjkFLAzEQhXOoYFv9Ad5yFGTXmaTZTY5t0SoUPKjgraS7CaZukrrJgvjrXaun9958M8ObkUmIwRByhVAiYHV7KH3jSwaIJagSGJuQKUglihrr-pzMUjoAgFAgp8Q_x27ILoZEc6QoaTPa3GsXTEvjMTvvvvUvp8c-7jvjEx19fje01-GD6tDScbXPTtNoT_NuzLqnXufefVE7hOZ0vrxZva0uyJnVXTKX_zonr_d3L-uHYvu0eVwvt8URgefCqj0TLWuFrCqDWoLi2Jq2rqwSC1lrwfUIheEWUAGDBVgQwDlDDY2yyOfk-u_vWPpzMCnvvEuN6TodTBzSDmvOBTKJFf8BI_pdDw
ContentType Journal Article
DBID 7S9
L.6
DOI 10.1016/j.mcm.2011.09.022
DatabaseName AGRICOLA
AGRICOLA - Academic
DatabaseTitle AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EndPage 968
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
4.4
4G.
5GY
5VS
7-5
71M
7S9
8P~
9JN
9JO
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AEUPX
AEXQZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
L.6
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TN5
XPP
XSW
YNT
YQT
ZMT
ID FETCH-LOGICAL-p103t-f9b25d2d5866e1a80931ded76f95487a53a2d55e3f01902040f0503321a0c9f13
ISSN 0895-7177
IngestDate Fri Jul 11 02:39:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4 p.955-968
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p103t-f9b25d2d5866e1a80931ded76f95487a53a2d55e3f01902040f0503321a0c9f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1733512816
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_1733512816
PublicationCentury 2000
PublicationDate 20120201
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 20120201
  day: 01
PublicationDecade 2010
PublicationTitle Mathematical and computer modelling
PublicationYear 2012
SSID ssj0005908
Score 2.0236042
Snippet The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with...
SourceID proquest
SourceType Aggregation Database
StartPage 955
SubjectTerms computer techniques
decision making
mathematical models
system optimization
Title Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function A+BXB
URI https://www.proquest.com/docview/1733512816
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXOBQ8SmggIwEp8hRHK-T-LiLWlWoLZddaTmtnMRGQiSpuqlU9dDf3hnbyQbKoXCJsk42u8pLZsaemfcI-ZQJbWtbKXjTkorNKsNZKaucaYC4sDwvEoWNwqdn2fFq9nUt1zsVR9dd0pdxdf3XvpL_QRXGAFfskv0HZMeLwgDsA76wBYRhey-MxzUtjCB5gSXkW6f5AFFkB7agCU2WUZCNGVIDESq1B94lrKvWQ6UAxpz6ImqQt_8qQp_nvj7_nC4W68U0kD0d6V4D2UAV5CG8ts6vwSO6Cl-_yPq9a3-EyqOwzID1GmPJRrBGSjKY--VT0-kZdsMjItgsOo-VlEx5pZxgE1U4y7vXcOyO5faLCD_jpmoCsaqKE9-y_DtL9tm3zdHq5GSzPFwvH5JHKUwPULkivpmU9iinRDj-5SGb7er6_viBOz7YBRbLp2Q_zAjo3MP7jDww7XPyZMITCZ92d3v7gjQj7LTvKC_oBHY6hZ0OsFPYhwtQhJ0CWDTATjvrxj3s1MNOB9jpPALQX5LV0eHyyzELqhnsnCeiZ1aVqazTWhZZZriGl03w2tR5ZpHbL9dSaDgojbBII5CCEbfICSRSrpNKWS5ekb22a81rQnWZJlkC3hyDTivyMhcG0-hZrSoJofkb8nG4dxuwSphq0q3pLrcbngshMUmbvb3HOQfk8e6Re0f2-otL8x5ivb784IC9BUB_Vm0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+to+18+constrained+optimization+problems+on+the+rank+and+inertia+of+the+linear+matrix+function+A%2BBXB&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Tian%2C+Yongge&rft.date=2012-02-01&rft.issn=0895-7177&rft.volume=55&rft.issue=3-4+p.955-968&rft.spage=955&rft.epage=968&rft_id=info:doi/10.1016%2Fj.mcm.2011.09.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon