Density profile slopes of dwarf galaxies and their environment

In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by De...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 419; no. 2; pp. 971 - 984
Main Author Del Popolo, A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2012
Wiley-Blackwell
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al.
AbstractList In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al.
ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108–1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N‐body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al.
ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N -body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is 0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ 0.04) than NGC 5949 (λ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. [PUBLICATION ABSTRACT]
In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M[odot] are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is [sime]0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum ( lambda [sime] 0.04) than NGC 5949 ( lambda [sime] 0.025). For NGC 5963, a very steep profile can be obtained with a low value of lambda ( lambda [sime] 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al.
Author Del Popolo, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Del Popolo
  fullname: Del Popolo, A.
  organization: 1Dipartimento di Fisica e Astronomia, Universitá di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25304565$$DView record in Pascal Francis
BookMark eNp1kF1LwzAUhoNMcJv-hyKIV61J89HmZiDzE6aC6HVI21RTuqQ2rdv-vek2dqF4bnI45z0vb54JGBlrFAABghHydVVFCDMaxpyxKIYIRYgnlETrIzA-LEZgDCGmYZogdAImzlUQQoJjNgazG2Wc7jZB09pS1ypwtW2UC2wZFCvZlsGHrOVa-4k0RdB9Kt0Gynzr1pqlMt0pOC5l7dTZ_p2C97vbt_lDuHi5f5xfL0KLOSZhnhQEco5VxrgqKUOQyYwkMZEppxwyiLMcZllaYEVlzhSGJCOS5BQlJMNpiafgcufrY371ynViqV2u6loaZXsneAyTNE1w7JXnv5SV7VvjwwmOUOz_7XNMwcVeJF0u67KVJtdONK1eynYjYuoDUEa9brbTrTyazWGPoBjYi0oMiMWAWAzsxZa9WIun59dt6w3wzsD2zT_n4Z9z_AOBrYln
CODEN MNRAA4
ContentType Journal Article
Copyright 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011
2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS
2015 INIST-CNRS
Copyright_xml – notice: 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011
– notice: 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS
– notice: 2015 INIST-CNRS
DBID IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2011.19754.x
DatabaseName Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 984
ExternalDocumentID 2539181411
25304565
MNR19754
10.1111/j.1365-2966.2011.19754.x
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AANHP
ABAZT
ABEJV
ABNGD
ACRPL
ACYXJ
ADNMO
AAMMB
ABGNP
ABVLG
ACUKT
ACUXJ
AEFGJ
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
ALXQX
AMNDL
ANAKG
APJGH
IQODW
JXSIZ
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-o3934-c7d40993eb69ef56106ab4724a89590603bc0bb8d3e5ac6e304b4a4c5174b38f3
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 08:48:36 EDT 2025
Mon Jul 14 07:22:23 EDT 2025
Mon Jul 21 09:15:41 EDT 2025
Wed Jan 22 16:38:30 EST 2025
Wed Aug 28 03:26:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords galaxies: formation
large-scale structure of Universe
cosmology: theory
Low surface brightness galaxies
Rotation curve
Digital simulation
Vapor condensation
N body system
Order parameters
Large-scale structure
Baryons
Tidal torque
Tide effect
Dark matter
Galaxy structure
Galaxy formation
Dwarf galaxies
Angular momentum
Cosmology
Tidal interaction
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o3934-c7d40993eb69ef56106ab4724a89590603bc0bb8d3e5ac6e304b4a4c5174b38f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/419/2/971/3104733/mnras0419-0971.pdf
PQID 911200499
PQPubID 42411
PageCount 14
ParticipantIDs proquest_miscellaneous_920788732
proquest_journals_911200499
pascalfrancis_primary_25304565
wiley_primary_10_1111_j_1365_2966_2011_19754_x_MNR19754
oup_primary_10_1111_j_1365-2966_2011_19754_x
PublicationCentury 2000
PublicationDate January 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: January 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References 1984; 281
1996; 308
1988a; 329
2008a; 388
1984; 286
1988b; 333
2002; 390
1994; 372
1994; 370
2000; 538
2010; 463
2008b; 34
2005; 619
2004; 604
1972; 176
1989; 347
1990
2002; 385
2002; 383
2005; 621
2002; 389
1997; 56
1980
1994; 427
2006; 442
1985; 297
2003; 284
2004; 616
2004; 420
1980; 236
2004; 42
2001; 560
2010; 2010
2011; 414
2010; 720
1995; 439
2000; 119
2005; 634
2009; 330
2009; 690
2000; 353
2009; 692
2001; 327
1990; 243
2009; 698
2001; 326
2001; 325
2006; 49
2005; 129
2008; 136
2003; 346
2003; 588
2003; 344
1973; 8
2003; 584
2003; 340
1969; 155
1999; 516
2010; 709
2010; 708
2004; 127
2006; 371
2009; 398
2010; 142
1999; 524
2003; 596
1992; 93
2008; 383
2006; 653
2001; 86
2007; 378
2003; 408
1981; 195
2007; 376
1990; 86
2003b; 587
2007; 377
1986; 301
2007; 658
2007; 655
2001
2011; 729
1992; 394
2002; 581
2007; 374
1987; 318
2007; 375
1977; 218
1995; 447
2008; 678
2008; 676
1949
1985; 58
2011; 731
2010; 402
2010
2002; 576
2002; 573
1996; 282
2002; 335
1998; 334
2003
2008; 685
2004; 349
1998; 299
1999; 303
2003a; 583
2004; 352
2004; 351
2004; 355
1998; 508
2002; 565
1998; 505
1998; 502
2003; 148
2003; 300
References_xml – volume: 58
  start-page: 39
  year: 1985
  publication-title: ApJS
– volume: 538
  start-page: 528
  year: 2000
  publication-title: ApJ
– volume: 394
  start-page: 1
  year: 1992
  publication-title: ApJ
– volume: 299
  start-page: 123
  year: 1998
  publication-title: MNRAS
– volume: 372
  start-page: 530
  year: 1994
  publication-title: Nat
– volume: 560
  start-page: L127
  year: 2001
  publication-title: ApJ
– volume: 383
  start-page: 84
  year: 2002
  publication-title: A&A
– volume: 334
  start-page: L9
  year: 1998
  publication-title: A&A
– volume: 370
  start-page: 629
  year: 1994
  publication-title: Nat
– volume: 378
  start-page: 55
  year: 2007
  publication-title: MNRAS
– volume: 329
  start-page: 589
  year: 1988a
  publication-title: ApJ
– volume: 282
  start-page: 436
  year: 1996
  publication-title: MNRAS
– volume: 619
  start-page: 258
  year: 2005
  publication-title: ApJ
– volume: 653
  start-page: 240
  year: 2006
  publication-title: ApJ
– volume: 375
  start-page: 199
  year: 2007
  publication-title: MNRAS
– year: 1990
– volume: 301
  start-page: 27
  year: 1986
  publication-title: ApJ
– volume: 692
  start-page: 1321
  year: 2009
  publication-title: ApJ
– volume: 308
  start-page: 373
  year: 1996
  publication-title: A&A
– volume: 218
  start-page: 592
  year: 1977
  publication-title: ApJ
– volume: 402
  start-page: 21
  year: 2010
  publication-title: MNRAS
– start-page: 195
  year: 1949
– volume: 34
  start-page: 87
  year: 2008b
  publication-title: Rev. Mex. Astron. Astrofis. Ser. Conf.
– volume: 281
  start-page: 1
  year: 1984
  publication-title: ApJ
– volume: 383
  start-page: 297
  year: 2008
  publication-title: MNRAS
– volume: 195
  start-page: 327
  year: 1981
  publication-title: MNRAS
– volume: 383
  start-page: 125
  year: 2002
  publication-title: A&A
– volume: 720
  start-page: L62
  year: 2010
  publication-title: ApJ
– volume: 297
  start-page: 16
  year: 1985
  publication-title: ApJ
– volume: 390
  start-page: 829
  year: 2002
  publication-title: A&A
– volume: 375
  start-page: 53
  year: 2007
  publication-title: MNRAS
– volume: 463
  start-page: 203
  year: 2010
  publication-title: Nat
– volume: 731
  start-page: 10
  year: 2011
  publication-title: ApJ
– volume: 414
  start-page: 587
  year: 2011
  publication-title: MNRAS
– volume: 685
  start-page: 105
  year: 2008
  publication-title: ApJ
– volume: 325
  start-page: 1397
  year: 2001
  publication-title: MNRAS
– volume: 318
  start-page: 15
  year: 1987
  publication-title: ApJ
– start-page: 18
  year: 2003
– volume: 402
  start-page: 1807
  year: 2010
  publication-title: MNRAS
– volume: 560
  start-page: 636
  year: 2001
  publication-title: ApJ
– year: 2010
– volume: 581
  start-page: 799
  year: 2002
  publication-title: ApJ
– volume: 616
  start-page: 16
  year: 2004
  publication-title: ApJ
– volume: 2010
  start-page: 194345
  year: 2010
  publication-title: Adv. Astron.
– volume: 349
  start-page: 1039
  year: 2004
  publication-title: MNRAS
– volume: 588
  start-page: L21
  year: 2003
  publication-title: ApJ
– volume: 565
  start-page: 238
  year: 2002
  publication-title: ApJ
– volume: 447
  start-page: L25
  year: 1995
  publication-title: ApJ
– volume: 584
  start-page: 541
  year: 2003
  publication-title: ApJ
– volume: 676
  start-page: 920
  year: 2008
  publication-title: ApJ
– volume: 148
  start-page: 175
  year: 2003
  publication-title: ApJS
– volume: 385
  start-page: 816
  year: 2002
  publication-title: A&A
– volume: 136
  start-page: 2648
  year: 2008
  publication-title: AJ
– volume: 604
  start-page: 18
  year: 2004
  publication-title: ApJ
– volume: 344
  start-page: 1131
  year: 2003
  publication-title: MNRAS
– volume: 243
  start-page: 133
  year: 1990
  publication-title: MNRAS
– volume: 355
  start-page: 794
  year: 2004
  publication-title: MNRAS
– volume: 376
  start-page: 393
  year: 2007
  publication-title: MNRAS
– volume: 86
  start-page: 3475
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 442
  start-page: 539
  year: 2006
  publication-title: Nat
– volume: 176
  start-page: 1
  year: 1972
  publication-title: ApJ
– volume: 655
  start-page: L5
  year: 2007
  publication-title: ApJ
– volume: 427
  start-page: L1
  year: 1994
  publication-title: ApJ
– volume: 374
  start-page: 1479
  year: 2007
  publication-title: MNRAS
– volume: 634
  start-page: 51
  year: 2005
  publication-title: ApJ
– volume: 408
  start-page: 27
  year: 2003
  publication-title: A&A
– volume: 729
  start-page: 118
  year: 2011
  publication-title: ApJ
– volume: 327
  start-page: 1297
  year: 2001
  publication-title: MNRAS
– volume: 340
  start-page: 657
  year: 2003
  publication-title: MNRAS
– volume: 420
  start-page: 147
  year: 2004
  publication-title: A&A
– volume: 42
  start-page: 603
  year: 2004
  publication-title: ARA&A
– volume: 377
  start-page: 5
  year: 2007
  publication-title: MNRAS
– volume: 389
  start-page: 29
  year: 2002
  publication-title: A&A
– volume: 371
  start-page: 401
  year: 2006
  publication-title: MNRAS
– volume: 129
  start-page: 2119
  year: 2005
  publication-title: AJ
– volume: 236
  start-page: 351
  year: 1980
  publication-title: ApJ
– volume: 8
  start-page: 3
  year: 1973
  publication-title: Soobshch. Spets. Astrofiz. Obs.
– volume: 573
  start-page: 597
  year: 2002
  publication-title: ApJ
– volume: 576
  start-page: L101
  year: 2002
  publication-title: ApJ
– volume: 524
  start-page: L19
  year: 1999
  publication-title: ApJ
– volume: 93
  start-page: 211
  year: 1992
  publication-title: A&AS
– volume: 388
  start-page: 863
  year: 2008a
  publication-title: MNRAS
– volume: 698
  start-page: 2093
  year: 2009
  publication-title: ApJ
– volume: 690
  start-page: 670
  year: 2009
  publication-title: ApJ
– volume: 335
  start-page: 487
  year: 2002
  publication-title: MNRAS
– volume: 142
  start-page: 24
  year: 2010
  publication-title: AJ
– volume: 708
  start-page: L14
  year: 2010
  publication-title: ApJ
– volume: 508
  start-page: 132
  year: 1998
  publication-title: ApJ
– volume: 127
  start-page: 203
  year: 2004
  publication-title: AJ
– volume: 516
  start-page: 530
  year: 1999
  publication-title: ApJ
– volume: 398
  start-page: 21
  year: 2009
  publication-title: MNRAS
– volume: 155
  start-page: 393
  year: 1969
  publication-title: ApJ
– volume: 300
  start-page: 1909
  year: 2003
  publication-title: Sci
– volume: 119
  start-page: 1579
  year: 2000
  publication-title: AJ
– volume: 353
  start-page: 427
  year: 2000
  publication-title: A&A
– volume: 56
  start-page: 1863
  year: 1997
  publication-title: Phys. Rev. D
– volume: 709
  start-page: 135
  year: 2010
  publication-title: ApJ
– volume: 351
  start-page: 903
  year: 2004
  publication-title: MNRAS
– volume: 49
  start-page: 3
  year: 2006
  publication-title: Astrophysics
– volume: 330
  start-page: 1004
  year: 2009
  publication-title: Astron. Nachr.
– volume: 678
  start-page: 621
  year: 2008
  publication-title: ApJ
– volume: 333
  start-page: 78
  year: 1988b
  publication-title: ApJ
– volume: 658
  start-page: 898
  year: 2007
  publication-title: ApJ
– volume: 621
  start-page: 757
  year: 2005
  publication-title: ApJ
– volume: 284
  start-page: 913
  year: 2003
  publication-title: Ap&SS
– volume: 502
  start-page: 48
  year: 1998
  publication-title: ApJ
– start-page: 45
  year: 2001
– year: 1980
– volume: 286
  start-page: 38
  year: 1984
  publication-title: ApJ
– volume: 583
  start-page: 732
  year: 2003a
  publication-title: ApJ
– volume: 2010
  start-page: 789293
  year: 2010
  publication-title: Adv. Astron.
– volume: 303
  start-page: 685
  year: 1999
  publication-title: MNRAS
– volume: 326
  start-page: 1205
  year: 2001
  publication-title: MNRAS
– volume: 346
  start-page: 601
  year: 2003
  publication-title: MNRAS
– volume: 2010
  start-page: 693968
  year: 2010
  publication-title: Adv. Astron.
– volume: 347
  start-page: 760
  year: 1989
  publication-title: ApJ
– volume: 439
  start-page: 250
  year: 1995
  publication-title: ApJ
– volume: 335
  start-page: L84
  year: 2002
  publication-title: MNRAS
– volume: 352
  start-page: 1109
  year: 2004
  publication-title: MNRAS
– volume: 505
  start-page: 37
  year: 1998
  publication-title: ApJ
– volume: 86
  start-page: 1
  year: 1990
  publication-title: A&AS
– volume: 596
  start-page: 957
  year: 2003
  publication-title: ApJ
– volume: 587
  start-page: L19
  year: 2003b
  publication-title: ApJ
SSID ssj0004326
Score 2.3702254
Snippet In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf...
ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108–1010 M⊙ are modified by the interaction of the...
ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M are modified by the interaction of the...
In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M[odot] are modified by the interaction of the dwarf...
SourceID proquest
pascalfrancis
wiley
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 971
SubjectTerms Astronomy
Astrophysics
cosmology: theory
Dark matter
Density
Earth, ocean, space
Exact sciences and technology
galaxies: formation
large‐scale structure of Universe
Stars & galaxies
Title Density profile slopes of dwarf galaxies and their environment
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2011.19754.x
https://www.proquest.com/docview/911200499
https://www.proquest.com/docview/920788732
Volume 419
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEB_E0wPxW6w-JQfxZJfapO3m8kB8igh6EAVvIUkTELVd7C6of70zaXfd9eMi3tKmKcmk0_xmMvkNwF6ijbY8FzGRucVCuDyW3KSx42gblIX0iQ3RFpf52Y04v81uu_gnOgvT8kNMHG6kGeF_TQquTTOr5CFCC_F6y8R5KItM9AhPUgXho6t3JinBQ-a1wNCINsLhbFDPly8aH3lbGOgG5eXbRBczSHQaz4YF6XQJ7sdDaeNQ7nujoenZ1w8sj78z1mVY7HArO2o_tBWYc9UqbB415EmvH1_YPgvl1lHSrEJ0gWi8fgpOe6w8frhDaByu1uDff4qaH76wLmE4ax7qgWtY7RmlkPYMVy39jCY801XJwlYGmzqQtw43pyfXx2dxl8chrrnkIrZFiVak5M7k0nkCbLk2okiF7stMJnnCjU2M6ZfcZdrmjifCCC0skWgb3vd8A-arunKbwJK-R_utKGVmvHDaY2tniaOMCNNtXkRwgHOmBi1Th5qycMbyUyQ_FeSnniPYnZncScM04wHrRrA9nm3VKXejcH1Ig6kYAZvUolbSVouuXD3CR9KEwjR5GkERJvabLqlPXVIXl1ehuPXjltvwB--nraPoL8wPn0ZuB6HT0OwGpXgDKGAI7w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KcmihpGnaEjeP6lB6qhfHku3VJRDyYNtm9xASyE1IsgSlG3uJdyHpr--M7N3sNukl9CYjyUgjj_XNaPQNwOdEG215LmIic4uFcHksuUljx9E2KAvpExuiLUb54Ep8v86uu3RAdBem5YdYONxIM8L_mhScHNKrWh5CtBCwt1ScB7LIRA8B5Tol-CYi_ZOLBy4pwUPutcDRiFbCwWpYz5Nvml96ez3RDUrMt6kuVrDoMqINW9LZGxjPJ9NGovzqzaamZ3__xfP4n2a7CRsddGVH7bf2Fl64agu2jxpyptc39-wLC-XWV9JsQTREQF7fBr89Vh6PfyI6Dk_v4PCEAuen96zLGc6acT1xDas9oyzSnuHGpe_Qime6Klk4zWBLd_Lew9XZ6eXxIO5SOcQ1l1zEtijRkJTcmVw6T5gt10YUqdB9mckkT7ixiTH9krtM29zxRBihhSUebcP7nn-Ataqu3DawpO_RhCtKmRkvnPbY21miKSPOdJsXEXzFRVOTlqxDLRk5c_kpkp8K8lN3EeyvrO6iY5rxAHcj2Jkvt-r0u1G4RaTBWoyALWpRMem0RVeunmGTNKFITZ5GUISV_ceQ1KMhqeHoIhQ_PrvnJ3g5uByeq_Nvox878ArbpK3faBfWprczt4dIamr2g4b8AcqXDQs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEB6KhVIo1toW11_NQ_Gpe8RNNnt5EcTz0LYeIhV8C0k2gaLdPdw7UP96J9m9866tL6VvWZIsyWRn881k8g3AZ6qNtkzwNJC5pZw7kUpmstQxtA3KQnpqY7TFSJxc8q9X-VUX_xTuwrT8EHOHW9CM-L8OCj4u_bKSxwgtxOstE-e-LHLeQzz5kgsqQxqHwcUTlRRnMfVapGhEI2F_Oarnr2-a3Xl7M9YNCsy3mS6WoOgioI070vAtXM_m0gaiXPemE9OzD7_RPP6fya7BagdcyWH7pb2DF65ah43DJrjS61_3ZI_EcuspadYhOUM4Xt9Grz1WHt38RGwcn97DwSCEzU_uSZcxnDQ39dg1pPYk5JD2BLctfYc2PNFVSeJZBlm4kfcBLofHP45O0i6RQ1ozyXhqixLNSMmcEdL5gNiENrzIuO7LXFJBmbHUmH7JXK6tcIxywzW3gUXbsL5nH2Glqiu3AYT2PRpwRSlz47nTHns7G0jKAmO6FUUCX3DN1Lil6lALJs5MfirIT0X5qbsEdpcWd94xy1kEuwlszVZbddrdKNwgsmgrJkDmtaiW4axFV66eYpOMhjhNliVQxIV9ZkjqjyGps9FFLG7-c89P8Op8MFTfT0fftuA1Nslap9E2rExup24HYdTE7Eb9eASGFwu6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+profile+slopes+of+dwarf+galaxies+and+their+environment&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Del+Popolo%2C+A.&rft.date=2012-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=419&rft.issue=2&rft.spage=971&rft.epage=984&rft_id=info:doi/10.1111%2Fj.1365-2966.2011.19754.x&rft.externalDBID=10.1111%252Fj.1365-2966.2011.19754.x&rft.externalDocID=MNR19754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon