Density profile slopes of dwarf galaxies and their environment
In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by De...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 419; no. 2; pp. 971 - 984 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2012
Wiley-Blackwell Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. |
---|---|
AbstractList | In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108–1010 M⊙ are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N‐body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is ≃0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ≃ 0.04) than NGC 5949 (λ≃ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ≃ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N -body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is 0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum (λ 0.04) than NGC 5949 (λ 0.025). For NGC 5963, a very steep profile can be obtained with a low value of λ (λ 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. [PUBLICATION ABSTRACT] In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M[odot] are modified by the interaction of the dwarf galaxy with neighbouring structures, and by the changing baryon fraction in dwarf galaxies. With this aim, and referring to an earlier paper by Del Popolo, we determine the density profiles of the dwarf galaxies, taking into account the effect of tidal interaction with neighbouring structures, the effects of ordered and random angular momentum, dynamical friction, the response of dark matter haloes to the condensation of baryons and the effects produced by the presence of baryons. As already shown in the earlier paper, the slope of the density profile of inner haloes flattens with decreasing halo mass, and the profile is well approximated by a Burkert profile. We thus treat the angular momentum generated by tidal torques and the baryon fraction as a parameter in order to understand how the latter influences the density profiles. The analysis shows that dwarf galaxies that have suffered a smaller tidal torque (and consequently have smaller angular momentum) are characterized by steeper profiles with respect to dwarf galaxies subject to higher torque. Similarly, dwarf galaxies that have a smaller baryon fraction also have steeper profiles than those that have a larger baryon fraction. When tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarf galaxies obtained in dissipationless N-body simulations. Then, we apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs: NGC 2976, which is known to have a flat inner core; NGC 5949, which has a profile intermediate between a cored and a cuspy one; and NGC 5963, which has a cuspy profile. After calculating the baryon fraction, which is [sime]0.1 for the three galaxies, we fitted the rotation curves, changing the value of the angular momentum. NGC 2976 has a higher value of ordered angular momentum ( lambda [sime] 0.04) than NGC 5949 ( lambda [sime] 0.025). For NGC 5963, a very steep profile can be obtained with a low value of lambda ( lambda [sime] 0.02) and also by decreasing the value of the random angular momentum. For NGC 2976, the tidal interaction with M81 could also have influenced the inner part of the density profile. Finally, we show how the inner density profile correlates with the tidal index for dwarf and low surface brightness galaxies given by Karachentsev et al. |
Author | Del Popolo, A. |
Author_xml | – sequence: 1 givenname: A. surname: Del Popolo fullname: Del Popolo, A. organization: 1Dipartimento di Fisica e Astronomia, Universitá di Catania, Viale Andrea Doria 6, 95125 Catania, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25304565$$DView record in Pascal Francis |
BookMark | eNp1kF1LwzAUhoNMcJv-hyKIV61J89HmZiDzE6aC6HVI21RTuqQ2rdv-vek2dqF4bnI45z0vb54JGBlrFAABghHydVVFCDMaxpyxKIYIRYgnlETrIzA-LEZgDCGmYZogdAImzlUQQoJjNgazG2Wc7jZB09pS1ypwtW2UC2wZFCvZlsGHrOVa-4k0RdB9Kt0Gynzr1pqlMt0pOC5l7dTZ_p2C97vbt_lDuHi5f5xfL0KLOSZhnhQEco5VxrgqKUOQyYwkMZEppxwyiLMcZllaYEVlzhSGJCOS5BQlJMNpiafgcufrY371ynViqV2u6loaZXsneAyTNE1w7JXnv5SV7VvjwwmOUOz_7XNMwcVeJF0u67KVJtdONK1eynYjYuoDUEa9brbTrTyazWGPoBjYi0oMiMWAWAzsxZa9WIun59dt6w3wzsD2zT_n4Z9z_AOBrYln |
CODEN | MNRAA4 |
ContentType | Journal Article |
Copyright | 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011 – notice: 2011 The Author Monthly Notices of the Royal Astronomical Society © 2011 RAS – notice: 2015 INIST-CNRS |
DBID | IQODW 8FD H8D L7M 7TG KL. |
DOI | 10.1111/j.1365-2966.2011.19754.x |
DatabaseName | Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 984 |
ExternalDocumentID | 2539181411 25304565 MNR19754 10.1111/j.1365-2966.2011.19754.x |
Genre | article Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AANHP ABAZT ABEJV ABNGD ACRPL ACYXJ ADNMO AAMMB ABGNP ABVLG ACUKT ACUXJ AEFGJ AGQPQ AGXDD AHGBF AIDQK AIDYY ALXQX AMNDL ANAKG APJGH IQODW JXSIZ 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-o3934-c7d40993eb69ef56106ab4724a89590603bc0bb8d3e5ac6e304b4a4c5174b38f3 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 08:48:36 EDT 2025 Mon Jul 14 07:22:23 EDT 2025 Mon Jul 21 09:15:41 EDT 2025 Wed Jan 22 16:38:30 EST 2025 Wed Aug 28 03:26:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | galaxies: formation large-scale structure of Universe cosmology: theory Low surface brightness galaxies Rotation curve Digital simulation Vapor condensation N body system Order parameters Large-scale structure Baryons Tidal torque Tide effect Dark matter Galaxy structure Galaxy formation Dwarf galaxies Angular momentum Cosmology Tidal interaction |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-o3934-c7d40993eb69ef56106ab4724a89590603bc0bb8d3e5ac6e304b4a4c5174b38f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/419/2/971/3104733/mnras0419-0971.pdf |
PQID | 911200499 |
PQPubID | 42411 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_920788732 proquest_journals_911200499 pascalfrancis_primary_25304565 wiley_primary_10_1111_j_1365_2966_2011_19754_x_MNR19754 oup_primary_10_1111_j_1365-2966_2011_19754_x |
PublicationCentury | 2000 |
PublicationDate | January 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: January 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Oxford University Press |
References | 1984; 281 1996; 308 1988a; 329 2008a; 388 1984; 286 1988b; 333 2002; 390 1994; 372 1994; 370 2000; 538 2010; 463 2008b; 34 2005; 619 2004; 604 1972; 176 1989; 347 1990 2002; 385 2002; 383 2005; 621 2002; 389 1997; 56 1980 1994; 427 2006; 442 1985; 297 2003; 284 2004; 616 2004; 420 1980; 236 2004; 42 2001; 560 2010; 2010 2011; 414 2010; 720 1995; 439 2000; 119 2005; 634 2009; 330 2009; 690 2000; 353 2009; 692 2001; 327 1990; 243 2009; 698 2001; 326 2001; 325 2006; 49 2005; 129 2008; 136 2003; 346 2003; 588 2003; 344 1973; 8 2003; 584 2003; 340 1969; 155 1999; 516 2010; 709 2010; 708 2004; 127 2006; 371 2009; 398 2010; 142 1999; 524 2003; 596 1992; 93 2008; 383 2006; 653 2001; 86 2007; 378 2003; 408 1981; 195 2007; 376 1990; 86 2003b; 587 2007; 377 1986; 301 2007; 658 2007; 655 2001 2011; 729 1992; 394 2002; 581 2007; 374 1987; 318 2007; 375 1977; 218 1995; 447 2008; 678 2008; 676 1949 1985; 58 2011; 731 2010; 402 2010 2002; 576 2002; 573 1996; 282 2002; 335 1998; 334 2003 2008; 685 2004; 349 1998; 299 1999; 303 2003a; 583 2004; 352 2004; 351 2004; 355 1998; 508 2002; 565 1998; 505 1998; 502 2003; 148 2003; 300 |
References_xml | – volume: 58 start-page: 39 year: 1985 publication-title: ApJS – volume: 538 start-page: 528 year: 2000 publication-title: ApJ – volume: 394 start-page: 1 year: 1992 publication-title: ApJ – volume: 299 start-page: 123 year: 1998 publication-title: MNRAS – volume: 372 start-page: 530 year: 1994 publication-title: Nat – volume: 560 start-page: L127 year: 2001 publication-title: ApJ – volume: 383 start-page: 84 year: 2002 publication-title: A&A – volume: 334 start-page: L9 year: 1998 publication-title: A&A – volume: 370 start-page: 629 year: 1994 publication-title: Nat – volume: 378 start-page: 55 year: 2007 publication-title: MNRAS – volume: 329 start-page: 589 year: 1988a publication-title: ApJ – volume: 282 start-page: 436 year: 1996 publication-title: MNRAS – volume: 619 start-page: 258 year: 2005 publication-title: ApJ – volume: 653 start-page: 240 year: 2006 publication-title: ApJ – volume: 375 start-page: 199 year: 2007 publication-title: MNRAS – year: 1990 – volume: 301 start-page: 27 year: 1986 publication-title: ApJ – volume: 692 start-page: 1321 year: 2009 publication-title: ApJ – volume: 308 start-page: 373 year: 1996 publication-title: A&A – volume: 218 start-page: 592 year: 1977 publication-title: ApJ – volume: 402 start-page: 21 year: 2010 publication-title: MNRAS – start-page: 195 year: 1949 – volume: 34 start-page: 87 year: 2008b publication-title: Rev. Mex. Astron. Astrofis. Ser. Conf. – volume: 281 start-page: 1 year: 1984 publication-title: ApJ – volume: 383 start-page: 297 year: 2008 publication-title: MNRAS – volume: 195 start-page: 327 year: 1981 publication-title: MNRAS – volume: 383 start-page: 125 year: 2002 publication-title: A&A – volume: 720 start-page: L62 year: 2010 publication-title: ApJ – volume: 297 start-page: 16 year: 1985 publication-title: ApJ – volume: 390 start-page: 829 year: 2002 publication-title: A&A – volume: 375 start-page: 53 year: 2007 publication-title: MNRAS – volume: 463 start-page: 203 year: 2010 publication-title: Nat – volume: 731 start-page: 10 year: 2011 publication-title: ApJ – volume: 414 start-page: 587 year: 2011 publication-title: MNRAS – volume: 685 start-page: 105 year: 2008 publication-title: ApJ – volume: 325 start-page: 1397 year: 2001 publication-title: MNRAS – volume: 318 start-page: 15 year: 1987 publication-title: ApJ – start-page: 18 year: 2003 – volume: 402 start-page: 1807 year: 2010 publication-title: MNRAS – volume: 560 start-page: 636 year: 2001 publication-title: ApJ – year: 2010 – volume: 581 start-page: 799 year: 2002 publication-title: ApJ – volume: 616 start-page: 16 year: 2004 publication-title: ApJ – volume: 2010 start-page: 194345 year: 2010 publication-title: Adv. Astron. – volume: 349 start-page: 1039 year: 2004 publication-title: MNRAS – volume: 588 start-page: L21 year: 2003 publication-title: ApJ – volume: 565 start-page: 238 year: 2002 publication-title: ApJ – volume: 447 start-page: L25 year: 1995 publication-title: ApJ – volume: 584 start-page: 541 year: 2003 publication-title: ApJ – volume: 676 start-page: 920 year: 2008 publication-title: ApJ – volume: 148 start-page: 175 year: 2003 publication-title: ApJS – volume: 385 start-page: 816 year: 2002 publication-title: A&A – volume: 136 start-page: 2648 year: 2008 publication-title: AJ – volume: 604 start-page: 18 year: 2004 publication-title: ApJ – volume: 344 start-page: 1131 year: 2003 publication-title: MNRAS – volume: 243 start-page: 133 year: 1990 publication-title: MNRAS – volume: 355 start-page: 794 year: 2004 publication-title: MNRAS – volume: 376 start-page: 393 year: 2007 publication-title: MNRAS – volume: 86 start-page: 3475 year: 2001 publication-title: Phys. Rev. Lett. – volume: 442 start-page: 539 year: 2006 publication-title: Nat – volume: 176 start-page: 1 year: 1972 publication-title: ApJ – volume: 655 start-page: L5 year: 2007 publication-title: ApJ – volume: 427 start-page: L1 year: 1994 publication-title: ApJ – volume: 374 start-page: 1479 year: 2007 publication-title: MNRAS – volume: 634 start-page: 51 year: 2005 publication-title: ApJ – volume: 408 start-page: 27 year: 2003 publication-title: A&A – volume: 729 start-page: 118 year: 2011 publication-title: ApJ – volume: 327 start-page: 1297 year: 2001 publication-title: MNRAS – volume: 340 start-page: 657 year: 2003 publication-title: MNRAS – volume: 420 start-page: 147 year: 2004 publication-title: A&A – volume: 42 start-page: 603 year: 2004 publication-title: ARA&A – volume: 377 start-page: 5 year: 2007 publication-title: MNRAS – volume: 389 start-page: 29 year: 2002 publication-title: A&A – volume: 371 start-page: 401 year: 2006 publication-title: MNRAS – volume: 129 start-page: 2119 year: 2005 publication-title: AJ – volume: 236 start-page: 351 year: 1980 publication-title: ApJ – volume: 8 start-page: 3 year: 1973 publication-title: Soobshch. Spets. Astrofiz. Obs. – volume: 573 start-page: 597 year: 2002 publication-title: ApJ – volume: 576 start-page: L101 year: 2002 publication-title: ApJ – volume: 524 start-page: L19 year: 1999 publication-title: ApJ – volume: 93 start-page: 211 year: 1992 publication-title: A&AS – volume: 388 start-page: 863 year: 2008a publication-title: MNRAS – volume: 698 start-page: 2093 year: 2009 publication-title: ApJ – volume: 690 start-page: 670 year: 2009 publication-title: ApJ – volume: 335 start-page: 487 year: 2002 publication-title: MNRAS – volume: 142 start-page: 24 year: 2010 publication-title: AJ – volume: 708 start-page: L14 year: 2010 publication-title: ApJ – volume: 508 start-page: 132 year: 1998 publication-title: ApJ – volume: 127 start-page: 203 year: 2004 publication-title: AJ – volume: 516 start-page: 530 year: 1999 publication-title: ApJ – volume: 398 start-page: 21 year: 2009 publication-title: MNRAS – volume: 155 start-page: 393 year: 1969 publication-title: ApJ – volume: 300 start-page: 1909 year: 2003 publication-title: Sci – volume: 119 start-page: 1579 year: 2000 publication-title: AJ – volume: 353 start-page: 427 year: 2000 publication-title: A&A – volume: 56 start-page: 1863 year: 1997 publication-title: Phys. Rev. D – volume: 709 start-page: 135 year: 2010 publication-title: ApJ – volume: 351 start-page: 903 year: 2004 publication-title: MNRAS – volume: 49 start-page: 3 year: 2006 publication-title: Astrophysics – volume: 330 start-page: 1004 year: 2009 publication-title: Astron. Nachr. – volume: 678 start-page: 621 year: 2008 publication-title: ApJ – volume: 333 start-page: 78 year: 1988b publication-title: ApJ – volume: 658 start-page: 898 year: 2007 publication-title: ApJ – volume: 621 start-page: 757 year: 2005 publication-title: ApJ – volume: 284 start-page: 913 year: 2003 publication-title: Ap&SS – volume: 502 start-page: 48 year: 1998 publication-title: ApJ – start-page: 45 year: 2001 – year: 1980 – volume: 286 start-page: 38 year: 1984 publication-title: ApJ – volume: 583 start-page: 732 year: 2003a publication-title: ApJ – volume: 2010 start-page: 789293 year: 2010 publication-title: Adv. Astron. – volume: 303 start-page: 685 year: 1999 publication-title: MNRAS – volume: 326 start-page: 1205 year: 2001 publication-title: MNRAS – volume: 346 start-page: 601 year: 2003 publication-title: MNRAS – volume: 2010 start-page: 693968 year: 2010 publication-title: Adv. Astron. – volume: 347 start-page: 760 year: 1989 publication-title: ApJ – volume: 439 start-page: 250 year: 1995 publication-title: ApJ – volume: 335 start-page: L84 year: 2002 publication-title: MNRAS – volume: 352 start-page: 1109 year: 2004 publication-title: MNRAS – volume: 505 start-page: 37 year: 1998 publication-title: ApJ – volume: 86 start-page: 1 year: 1990 publication-title: A&AS – volume: 596 start-page: 957 year: 2003 publication-title: ApJ – volume: 587 start-page: L19 year: 2003b publication-title: ApJ |
SSID | ssj0004326 |
Score | 2.3702254 |
Snippet | In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010 M⊙ are modified by the interaction of the dwarf... ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108–1010 M⊙ are modified by the interaction of the... ABSTRACT In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M are modified by the interaction of the... In this paper, we study how the dark matter density profiles of dwarf galaxies in the mass range 108-1010M[odot] are modified by the interaction of the dwarf... |
SourceID | proquest pascalfrancis wiley oup |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 971 |
SubjectTerms | Astronomy Astrophysics cosmology: theory Dark matter Density Earth, ocean, space Exact sciences and technology galaxies: formation large‐scale structure of Universe Stars & galaxies |
Title | Density profile slopes of dwarf galaxies and their environment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2011.19754.x https://www.proquest.com/docview/911200499 https://www.proquest.com/docview/920788732 |
Volume | 419 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEB_E0wPxW6w-JQfxZJfapO3m8kB8igh6EAVvIUkTELVd7C6of70zaXfd9eMi3tKmKcmk0_xmMvkNwF6ijbY8FzGRucVCuDyW3KSx42gblIX0iQ3RFpf52Y04v81uu_gnOgvT8kNMHG6kGeF_TQquTTOr5CFCC_F6y8R5KItM9AhPUgXho6t3JinBQ-a1wNCINsLhbFDPly8aH3lbGOgG5eXbRBczSHQaz4YF6XQJ7sdDaeNQ7nujoenZ1w8sj78z1mVY7HArO2o_tBWYc9UqbB415EmvH1_YPgvl1lHSrEJ0gWi8fgpOe6w8frhDaByu1uDff4qaH76wLmE4ax7qgWtY7RmlkPYMVy39jCY801XJwlYGmzqQtw43pyfXx2dxl8chrrnkIrZFiVak5M7k0nkCbLk2okiF7stMJnnCjU2M6ZfcZdrmjifCCC0skWgb3vd8A-arunKbwJK-R_utKGVmvHDaY2tniaOMCNNtXkRwgHOmBi1Th5qycMbyUyQ_FeSnniPYnZncScM04wHrRrA9nm3VKXejcH1Ig6kYAZvUolbSVouuXD3CR9KEwjR5GkERJvabLqlPXVIXl1ehuPXjltvwB--nraPoL8wPn0ZuB6HT0OwGpXgDKGAI7w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KcmihpGnaEjeP6lB6qhfHku3VJRDyYNtm9xASyE1IsgSlG3uJdyHpr--M7N3sNukl9CYjyUgjj_XNaPQNwOdEG215LmIic4uFcHksuUljx9E2KAvpExuiLUb54Ep8v86uu3RAdBem5YdYONxIM8L_mhScHNKrWh5CtBCwt1ScB7LIRA8B5Tol-CYi_ZOLBy4pwUPutcDRiFbCwWpYz5Nvml96ez3RDUrMt6kuVrDoMqINW9LZGxjPJ9NGovzqzaamZ3__xfP4n2a7CRsddGVH7bf2Fl64agu2jxpyptc39-wLC-XWV9JsQTREQF7fBr89Vh6PfyI6Dk_v4PCEAuen96zLGc6acT1xDas9oyzSnuHGpe_Qime6Klk4zWBLd_Lew9XZ6eXxIO5SOcQ1l1zEtijRkJTcmVw6T5gt10YUqdB9mckkT7ixiTH9krtM29zxRBihhSUebcP7nn-Ataqu3DawpO_RhCtKmRkvnPbY21miKSPOdJsXEXzFRVOTlqxDLRk5c_kpkp8K8lN3EeyvrO6iY5rxAHcj2Jkvt-r0u1G4RaTBWoyALWpRMem0RVeunmGTNKFITZ5GUISV_ceQ1KMhqeHoIhQ_PrvnJ3g5uByeq_Nvox878ArbpK3faBfWprczt4dIamr2g4b8AcqXDQs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEB6KhVIo1toW11_NQ_Gpe8RNNnt5EcTz0LYeIhV8C0k2gaLdPdw7UP96J9m9866tL6VvWZIsyWRn881k8g3AZ6qNtkzwNJC5pZw7kUpmstQxtA3KQnpqY7TFSJxc8q9X-VUX_xTuwrT8EHOHW9CM-L8OCj4u_bKSxwgtxOstE-e-LHLeQzz5kgsqQxqHwcUTlRRnMfVapGhEI2F_Oarnr2-a3Xl7M9YNCsy3mS6WoOgioI070vAtXM_m0gaiXPemE9OzD7_RPP6fya7BagdcyWH7pb2DF65ah43DJrjS61_3ZI_EcuspadYhOUM4Xt9Grz1WHt38RGwcn97DwSCEzU_uSZcxnDQ39dg1pPYk5JD2BLctfYc2PNFVSeJZBlm4kfcBLofHP45O0i6RQ1ozyXhqixLNSMmcEdL5gNiENrzIuO7LXFJBmbHUmH7JXK6tcIxywzW3gUXbsL5nH2Glqiu3AYT2PRpwRSlz47nTHns7G0jKAmO6FUUCX3DN1Lil6lALJs5MfirIT0X5qbsEdpcWd94xy1kEuwlszVZbddrdKNwgsmgrJkDmtaiW4axFV66eYpOMhjhNliVQxIV9ZkjqjyGps9FFLG7-c89P8Op8MFTfT0fftuA1Nslap9E2rExup24HYdTE7Eb9eASGFwu6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+profile+slopes+of+dwarf+galaxies+and+their+environment&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Del+Popolo%2C+A.&rft.date=2012-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=419&rft.issue=2&rft.spage=971&rft.epage=984&rft_id=info:doi/10.1111%2Fj.1365-2966.2011.19754.x&rft.externalDBID=10.1111%252Fj.1365-2966.2011.19754.x&rft.externalDocID=MNR19754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |